377 research outputs found

    Progression of Diet-Induced Diabetes in C57BL6J Mice Involves Functional Dissociation of Ca2+ Channels From Secretory Vesicles

    Get PDF
    OBJECTIVE: The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS: C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS: After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS: HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes

    Pancreatic alpha cell mass in European subjects with type 2 diabetes

    Get PDF
    AIMS/HYPOTHESIS: Type 2 diabetes is a bi-hormonal disease characterised by relative hypoinsulinaemia and hyperglucagonaemia with elevated blood glucose levels. Besides pancreatic beta cell defects, a low number of beta cells (low beta cell mass) may contribute to the insufficient secretion of insulin. In this study our aim was to determine whether the alpha cell mass is also altered. METHODS: Using a point counting method, we measured the ratio of alpha to beta cell areas in pancreas samples obtained at autopsy from 50 type 2 diabetic subjects, whose beta cell mass had previously been found to be 36% lower than that of 52 non-diabetic subjects. RESULTS: The topography of alpha and beta cells was similar in both groups: many alpha cells were localised in the centre of the islets and the ratio of alpha/beta cell areas increased with islet size. The average ratio was significantly higher in type 2 diabetic subjects (0.72) than in non-diabetic subjects (0.42), with, however, a large overlap between the two groups. In contrast, the alpha cell mass was virtually identical in type 2 diabetic subjects (366 mg) and non-diabetic subjects (342 mg), and was not influenced by sex, BMI or type of diabetes treatment. CONCLUSIONS: The higher proportion of alpha to beta cells in the islets of some type 2 diabetic subjects is due to a decrease in beta cell number rather than an increase in alpha cell number. This imbalance may contribute to alterations in the normal inhibitory influence exerted by beta cells on alpha cells, and lead to the relative hyperglucagonaemia observed in type 2 diabete

    Amiloride derivatives enhance insulin release in pancreatic islets from diabetic mice

    Get PDF
    BACKGROUND: Amiloride derivatives, commonly used for their diuretic and antihypertensive properties, can also cause a sustained but reversible decrease of intracellular pH (pH(i)). Using dimethyl amiloride (DMA) on normal rodent pancreatic islets, we previously demonstrated the critical influence of islet pH(i )on insulin secretion. Nutrient-stimulated insulin secretion (NSIS) requires a specific pH(i)-range, and is dramatically enhanced by forced intracellular acidification with DMA. Furthermore, DMA can enable certain non-secretagogues to stimulate insulin secretion, and induce time-dependent potentiation (TDP) of insulin release in mouse islets where this function is normally absent. The present study was performed to determine whether pH(i)-manipulation could correct the secretory defect in islets isolated from mice with type 2 diabetes. METHODS: Using two mouse models of type 2 diabetes, we compared a) pHi-regulation, and b) NSIS with and without treatment with amiloride derivatives, in islets isolated from diabetic mice and wild type mice. RESULTS: A majority of the islets from the diabetic mice showed a slightly elevated basal pH(i )and/or poor recovery from acid/base load. DMA treatment produced a significant increase of NSIS in islets from the diabetic models. DMA also enabled glucose to induce TDP in the islets from diabetic mice, albeit to a lesser degree than in normal islets. CONCLUSION: Islets from diabetic mice show some mis-regulation of intracellular pH, and their secretory capacity is consistently enhanced by DMA/amiloride. Thus, amiloride derivatives show promise as potential therapeutic agents for type 2 diabetes

    Neuronal Calcium Sensor Synaptotagmin-9 Is Not Involved in the Regulation of Glucose Homeostasis or Insulin Secretion

    Get PDF
    BACKGROUND:Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS:In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS:Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells
    corecore