3,687 research outputs found

    Oscillatory Size-Dependence of the Surface Plasmon Linewidth in Metallic Nanoparticles

    Full text link
    We study the linewidth of the surface plasmon resonance in the optical absorption spectrum of metallic nanoparticles, when the decay into electron-hole pairs is the dominant channel. Within a semiclassical approach, we find that the electron-hole density-density correlation oscillates as a function of the size of the particles, leading to oscillations of the linewidth. This result is confirmed numerically for alkali and noble metal particles. While the linewidth can increase strongly, the oscillations persist when the particles are embedded in a matrix.Comment: RevTeX4, 5 pages, 2 figures, final versio

    The propensity of molecules to spatially align in intense light fields

    Get PDF
    The propensity of molecules to spatially align along the polarization vector of intense, pulsed light fields is related to readily-accessible parameters (molecular polarizabilities, moment of inertia, peak intensity of the light and its pulse duration). Predictions can now be made of which molecules can be spatially aligned, and under what circumstances, upon irradiation by intense light. Accounting for both enhanced ionization and hyperpolarizability, it is shown that {\it all} molecules can be aligned, even those with the smallest static polarizability, when subjected to the shortest available laser pulses (of sufficient intensity).Comment: 8 pages, 4 figures, to be submitted to PR

    Thermal expansion in small metal clusters and its impact on the electric polarizability

    Get PDF
    The thermal expansion coefficients of NaN\mathrm{Na}_{N} clusters with 8N408 \le N \le 40 and Al7\mathrm{Al}_{7}, Al13\mathrm{Al}_{13}^- and Al14\mathrm{Al}_{14}^- are obtained from {\it ab initio} Born-Oppenheimer LDA molecular dynamics. Thermal expansion of small metal clusters is considerably larger than that in the bulk and size-dependent. We demonstrate that the average static electric dipole polarizability of Na clusters depends linearly on the mean interatomic distance and only to a minor extent on the detailed ionic configuration when the overall shape of the electron density is enforced by electronic shell effects. The polarizability is thus a sensitive indicator for thermal expansion. We show that taking this effect into account brings theoretical and experimental polarizabilities into quantitative agreement.Comment: 4 pages, 2 figures, one table. Accepted for publication in Physical Review Letters. References 10 and 23 update

    Classification of phase transitions in small systems

    Get PDF
    We present a classification scheme for phase transitions in finite systems like atomic and molecular clusters based on the Lee-Yang zeros in the complex temperature plane. In the limit of infinite particle numbers the scheme reduces to the Ehrenfest definition of phase transitions and gives the right critical indices. We apply this classification scheme to Bose-Einstein condensates in a harmonic trap as an example of a higher order phase transitions in a finite system and to small Ar clusters.Comment: 12 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Ionic structure and photoabsorption in medium sized sodium clusters

    Get PDF
    We present ground-state configurations and photoabsorption spectra of Na-7+, Na-27+ and Na-41+. Both the ionic structure and the photoabsorption spectra of medium-size sodium clusters beyond Na-20 have been calculated self-consistently with a nonspherical treatment of the valence electrons in density functional theory. We use a local pseudopotential that has been adjusted to experimental bulk properties and the atomic 3s level of sodium. Our studies have shown that both the ionic structure of the ground state and the positions of the plasmon resonances depend sensitively on the pseudopotential used in the calculation, which stresses the importance of its consistent use in both steps.Comment: 4 pages, 3 figures. Accepted for publication in PRB, tentatively July 15th, 1998 some typos corrected, brought to nicer forma

    Ionic and electronic structure of sodium clusters up to N=59

    Get PDF
    We determined the ionic and electronic structure of sodium clusters with even electron numbers and 2 to 59 atoms in axially averaged and three-dimensional density functional calculations. A local, phenomenological pseudopotential that reproduces important bulk and atomic properties and facilitates structure calculations has been developed. Photoabsorption spectra have been calculated for Na2\mathrm{Na}_2, Na8\mathrm{Na}_8, and Na9+\mathrm{Na}_9^+ to Na59+\mathrm{Na}_{59}^+. The consistent inclusion of ionic structure considerably improves agreement with experiment. An icosahedral growth pattern is observed for Na19+\mathrm{Na}_{19}^+ to Na59+\mathrm{Na}_{59}^+. This finding is supported by photoabsorption data.Comment: To appear in Phys. Rev. B 62. Version with figures in better quality can be requested from the author
    corecore