16,646 research outputs found
Influence of friction forces on the motion of VTOL aircraft during landing operations on ships at sea
Equations describing the friction forces generated during landing operations on ships at sea were formulated. These forces depend on the platform reaction and the coefficient of friction. The platform reaction depends on the relative sink rate and the shock absorbing capability of the landing gear. The friction coefficient varies with the surface condition of the landing platform and the angle of yaw of the aircraft relative to the landing platform. Landings by VTOL aircraft, equipped with conventional oleopneumatic landing gears are discussed. Simplifications are introduced to reduce the complexity of the mathematical description of the tire and shock strut characteristics. Approximating the actual complicated force deflection characteristic of the tire by linear relationship is adequate. The internal friction forces in the shock strut are included in the landing gear model. A set of relatively simple equations was obtained by including only those tire and shock strut characteristics that contribute significantly to the generation of landing gear forces
Efficient creation of molecules from a cesium Bose-Einstein condensate
We report a new scheme to create weakly bound Cs molecules from an atomic
Bose-Einstein condensate. The method is based on switching the magnetic field
to a narrow Feshbach resonance and yields a high atom-molecule conversion
efficiency of more than 30%, a factor of three higher than obtained with
conventional magnetic-field ramps. The Cs molecules are created in a single
-wave rotational quantum state. The observed dependence of the conversion
efficiency on the magnetic field and atom density shows scattering processes
beyond two-body coupling to occur in the vicinity of the Feshbach resonance.Comment: 7 pages, 4 figures, submitted to Europhysics Letter
Evaluating deterrents of illegal behaviour in conservation: Carnivore killing in rural Taiwan
Rules restricting resource use are ubiquitous to conservation. Recent increases in poaching of iconic species such as African elephant and rhino have triggered high-profile interest in enforcement. Previous studies have used economic models to explore how the probability and severity of sanctions influence poacher-behaviour. Yet despite evidence that compliance can be substantial when the threat of state-imposed sanctions is low and profits high, few have explored other factors deterring rule-breaking. We use the randomised response technique (RRT) and direct questions to estimate the proportion of rural residents in north-western Taiwan illegally killing wildlife. We then model how potential sources of deterrence: perceived probabilities of detection and punishment, social norms and self-imposed guilt, relate to non-compliant behaviour (reported via RRT). The perceived likelihood of being punished and two types of social norms (injunctive and descriptive) predict behaviour and deter rule-breaking. Harnessing social norms that encourage compliance offers potential for reducing the persecution of threatened species
Ultracold molecules: vehicles to scalable quantum information processing
We describe a novel scheme to implement scalable quantum information
processing using Li-Cs molecular state to entangle Li and Cs
ultracold atoms held in independent optical lattices. The Li atoms will
act as quantum bits to store information, and Cs atoms will serve as
messenger bits that aid in quantum gate operations and mediate entanglement
between distant qubit atoms. Each atomic species is held in a separate optical
lattice and the atoms can be overlapped by translating the lattices with
respect to each other. When the messenger and qubit atoms are overlapped,
targeted single spin operations and entangling operations can be performed by
coupling the atomic states to a molecular state with radio-frequency pulses. By
controlling the frequency and duration of the radio-frequency pulses,
entanglement can either be created or swapped between a qubit messenger pair.
We estimate operation fidelities for entangling two distant qubits and discuss
scalability of this scheme and constraints on the optical lattice lasers
Intense slow beams of bosonic potassium isotopes
We report on an experimental realization of a two-dimensional magneto-optical
trap (2D-MOT) that allows the generation of cold atomic beams of 39K and 41K
bosonic potassium isotopes. The high measured fluxes up to 1.0x10^11 atoms/s
and low atomic velocities around 33 m/s are well suited for a fast and reliable
3D-MOT loading, a basilar feature for new generation experiments on
Bose-Einstein condensation of dilute atomic samples. We also present a simple
multilevel theoretical model for the calculation of the light-induced force
acting on an atom moving in a MOT. The model gives a good agreement between
predicted and measured flux and velocity values for our 2D-MOT.Comment: Updated references, 1 figure added, 10 pages, 9 figure
Lyapunov Spectra in SU(2) Lattice Gauge Theory
We develop a method for calculating the Lyapunov characteristic exponents of
lattice gauge theories. The complete Lyapunov spectrum of SU(2) gauge theory is
obtained and Kolmogorov-Sinai entropy is calculated. Rapid convergence with
lattice size is found.Comment: 7pp, DUKE-TH-93-5
Protein mechanical unfolding: importance of non-native interactions
Mechanical unfolding of the fourth domain of Distyostelium discoideum filamin
(DDFLN4) was studied by all-atom molecular dynamics simulations, using the
GROMOS96 force field 43a1 and the simple point charge explicit water solvent.
Our study reveals an important role of non-native interactions in the unfolding
process. Namely, the existence of a peak centered at the end-to-end extension
22 nm in the force-extension curve, is associated with breaking of non-native
hydrogen bonds. Such a peak has been observed in experiments but not in Go
models, where non-native interactions are neglected. We predict that an
additional peak occurs at 2 nm using not only GROMOS96 force field 43a1 but
also Amber 94 and OPLS force fields. This result would stimulate further
experimental studies on elastic properties of DDFLN4.Comment: 27 pages, 15 figure
Critical velocity for superfluid flow across the BEC-BCS crossover
Critical velocities have been observed in an ultracold superfluid Fermi gas
throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at
unitarity demonstrates that superfluidity is most robust for resonant atomic
interactions. Critical velocities were determined from the abrupt onset of
dissipation when the velocity of a moving one dimensional optical lattice was
varied. The dependence of the critical velocity on lattice depth and on the
inhomogeneous density profile was studied
Precision Measurements of Collective Oscillations in the BEC-BCS Crossover
We report on precision measurements of the frequency of the radial
compression mode in a strongly interacting, optically trapped Fermi gas of Li-6
atoms. Our results allow for a test of theoretical predictions for the equation
of state in the BEC-BCS crossover. We confirm recent quantum Monte-Carlo
results and rule out simple mean-field BCS theory. Our results show the
long-sought beyond-mean-field effects in the strongly interacting BEC regime.Comment: improved discussion of small ellipticity and anharmonicity
correction
- …