12,488 research outputs found
Gemini/GMOS Transmission Spectral Survey: Complete Optical Transmission Spectrum of the hot Jupiter WASP-4b
We present the complete optical transmission spectrum of the hot Jupiter
WASP-4b from 440-940 nm at R ~ 400-1500 obtained with the Gemini Multi-Object
Spectrometers (GMOS); this is the first result from a comparative
exoplanetology survey program of close-in gas giants conducted with GMOS.
WASP-4b has an equilibrium temperature of 1700 K and is favorable to study in
transmission due to a large scale height (370 km). We derive the transmission
spectrum of WASP-4b using 4 transits observed with the MOS technique. We
demonstrate repeatable results across multiple epochs with GMOS, and derive a
combined transmission spectrum at a precision about twice above photon noise,
which is roughly equal to to one atmospheric scale height. The transmission
spectrum is well fitted with a uniform opacity as a function of wavelength. The
uniform opacity and absence of a Rayleigh slope from molecular hydrogen suggest
that the atmosphere is dominated by clouds with condensate grain size of ~1 um.
This result is consistent with previous observations of hot Jupiters since
clouds have been seen in planets with similar equilibrium temperatures to
WASP-4b. We describe a custom pipeline that we have written to reduce GMOS
time-series data of exoplanet transits, and present a thorough analysis of the
dominant noise sources in GMOS, which primarily consist of wavelength- and
time- dependent displacements of the spectra on the detector, mainly due to a
lack of atmospheric dispersion correction.Comment: 23 pages, 12 figures, accepted for publication in AJ, 2017 July
Comparing key compositional indicators in Jupiter with those in extra-solar giant planets
Spectroscopic transiting observations of the atmospheres of hot Jupiters
around other stars, first with Hubble Space Telescope and then Spitzer, opened
the door to compositional studies of exoplanets. The James Webb Space Telescope
will provide such a profound improvement in signal-to-noise ratio that it will
enable detailed analysis of molecular abundances, including but not limited to
determining abundances of all the major carbon- and oxygen-bearing species in
hot Jupiter atmospheres. This will allow determination of the carbon-to-oxygen
ratio, an essential number for planet formation models and a motivating goal of
the Juno mission currently around JupiterComment: Submitted to the Astro2020 Decadal Survey as a white paper; thematic
areas "Planetary Systems" and "Star and Planet Formation
Internal Stress in a Model Elasto-Plastic Fluid
Plastic materials can carry memory of past mechanical treatment in the form
of internal stress. We introduce a natural definition of the vorticity of
internal stress in a simple two-dimensional model of elasto-plastic fluids,
which generates the internal stress. We demonstrate how the internal stress is
induced under external loading, and how the presence of the internal stress
modifies the plastic behavior.Comment: 4 pages, 3 figure
Vector magnetic hysteresis of hard superconductors
Critical state problems which incorporate more than one component for the
magnetization vector of hard superconductors are investigated. The theory is
based on the minimization of a cost functional
which weighs the changes of the magnetic field vector within the sample. We
show that Bean's simplest prescription of choosing the correct sign for the
critical current density in one dimensional problems is just a particular
case of finding the components of the vector . is
determined by minimizing under the constraint , with a bounded set. Upon the selection of
different sets we discuss existing crossed field measurements and
predict new observable features. It is shown that a complex behavior in the
magnetization curves may be controlled by a single external parameter, i.e.:
the maximum value of the applied magnetic field .Comment: 10 pages, 9 figures, accepted in Phys. Rev.
Autonomous clustering using rough set theory
This paper proposes a clustering technique that minimises the need for subjective
human intervention and is based on elements of rough set theory. The proposed algorithm is
unified in its approach to clustering and makes use of both local and global data properties to
obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and
results from three data sets of single and mixed attribute types are used to illustrate the
technique and establish its efficiency
Field Induced Nodal Order Parameter in the Tunneling Spectrum of YBaCuO Superconductor
We report planar tunneling measurements on thin films of
YBaCuO at various doping levels under magnetic fields. By
choosing a special setup configuration, we have probed a field induced energy
scale that dominates in the vicinity of a node of the d-wave superconducting
order parameter. We found a high doping sensitivity for this energy scale. At
Optimum doping this energy scale is in agreement with an induced
order parameter. We found that it can be followed down to low fields at optimum
doping, but not away from it.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Superconductivity in Dense Wires
becomes superconducting just below 40 K. Whereas porous
polycrystalline samples of can be synthesized from boron powders, in
this letter we demonstrate that dense wires of can be prepared by
exposing boron filaments to vapor. The resulting wires have a diameter of
160 , are better than 80% dense and manifest the full shielding in the superconducting state. Temperature-dependent
resistivity measurements indicate that is a highly conducting metal in
the normal state with = 0.38 -. Using this value, an
electronic mean free path, can be estimated, indicating
that wires are well within the clean limit. , , and
data indicate that manifests comparable or better superconducting
properties in dense wire form than it manifests as a sintered pellet.Comment: Figures' layout fixe
Temporal evolution of long-period seismicity at Etna Volcano, Italy, and its relationships with the 2004â2005 eruption
Between December 2004 and August 2005, more than 50,000 long-period events (LP) accompanied by very-long period pulses (VLP) were recorded at Mt. Etna, encompassing the effusive eruption which started in September 2004. The observed activity can be explained by the injection of a gas slug formed within the magmatic column into an overlying cavity filled by either magmatic or hydrothermal fluids, thus triggering cavity resonance. Although a large number of LP events exhibit similar waveforms before the eruption, they change significantly during and after the eruption. We study the temporal evolution of the LP-VLP activity in terms of the source movement, change of the waveforms, temporal evolution of the dominant resonance frequencies and the source Q factor and changes in the polarization of the signal. The LP source locations before and after the eruption, respectively, do not move significantly, while a slight movement of the VLP source is found. The intensity of the LP events increases after the eruption as well as their dominant frequency and Q factor, while the polarization of the signals changes from predominantly transversal to pure radial motion. Although in previous studies a link between the observed LP activity and the eruption was not found, these observations suggest that such a link was established at the latter end of the eruptive sequence, most likely as a consequence of a reestablishment of the pressure balance in the plumbing system, after it was undermined due to the discharge of large amounts of resident magma during the eruption. Based on the polarization properties of the signal and geological setting of the area, a fluid-filled crack is proposed as the most likely source geometry. The spectral analysis based on the autoregressive-models (SOMPI) is applied to the signals in order to analyse the resonance frequencies and the source Q-factors. The results suggest water and basalt at low gas volume fraction as the most likely fluids involved in the source process. Using theoretical relations for the âslow wavesâ radiated from the fluid-filled crack, we also estimate the crack size for both fluids, respectively
Photoemission Measurement of Equilibrium Segregation at GeSi Surfaces
Photoemission spectroscopy is used to demonstrate that Ge segregates to the first atomic layer of Ge0.5Si0.5(100)2Ă1 and that the second layer is predominantly Si. Comparison of the resolved signals from the dimer atoms of the reconstructed (100)2Ă1 surfaces of Ge, Si, and equiatomic GeâSi alloy shows that the surface layer of the alloy is extremely Ge rich and the second layer is occupied mainly by Si atoms. This result is in good agreement with theoretical predictions
- âŠ