954 research outputs found

    Adverse Selection in an Insurance Market with Government-Guaranteed Subsistence Levels

    Get PDF
    We consider a competitive insurance market with adverse selection. Unlike the standard models, we assume that individuals receive the benefit of some type of potential government assistance that guarantees them a minimum level of wealth. For example, this assistance might be some type of government-sponsored relief program, or it might simply be some type of limited liability afforded via bankruptcy laws. Government assistance is calculated ex post of any insurance benefits. This alters the individuals’ demand for insurance coverage. In turn, this affects equilibria in various insurance models of markets with adverse selection.adverse selection, insurance, government relief

    Rotating Black Hole Thermodynamics with a Particle Probe

    Full text link
    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultra-spinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.Comment: 14 page

    Proposal for reading out anyon qubits in non-abelian ν=12/5\nu = 12/5 quantum Hall state

    Full text link
    To detect non-abelian statistics in the ν=12/5\nu = 12/5 quantum Hall state through interferometry, we apply an analysis similar to the ones proposed for the non-abelian ν=5/2\nu = 5/2 quantum Hall state. The result is that the amplitude of the Aharonov-Bohm oscillation of this interference is dependent on the internal states of quasiholes, but, in contrast to the ν=5/2\nu = 5/2 quantum Hall state, independent of the number of quasiholes. However, if the quasiholes are in a superposition state, it is necessary for the interferometer to have certain additional features to obtain the coefficients.Comment: 16 pages, 2 figures, Latex. Reference added, some errors corrected, some content changed, some changes in the abstrac

    Structured Modeling with Hyperdag P Systems: Part A

    Get PDF
    P systems provide a computational model based on the structure and interaction of living cells. A P system consists of a hierarchical nesting of cell-like membranes, which can be visualized as a rooted tree. Although the P systems are computationally complete, many real world models, e.g., from socio-economic systems, databases, operating systems, distributed systems, seem to require more expressive power than provided by tree structures. Many such systems have a primary tree-like structure completed with shared or secondary communication channels. Modeling these as tree-based systems, while theoretically possible, is not very appealing, because it typically needs artificial extensions that introduce additional complexities, nonexistent in the originals. In this paper we propose and define a new model that combines structure and flexibility, called hyperdag P systems, in short, hP systems, which extend the definition of conventional P systems, by allowing dags, interpreted as hypergraphs, instead of trees, as models for the membrane structure. We investigate the relation between our hP systems and neural P systems. Despite using an apparently less powerful structure, i.e., a dag instead of a general graph, we argue that hP systems have essentially the same computational power as tissue and neural P systems. We argue that hP systems offer a structured approach to membrane-based modeling that is often closer to the behavior and underlying structure of the modeled objects. Additionally, we enable dynamical changes of the rewriting modes (e.g., to alternate between determinism and parallelism) and of the transfer modes (e.g., the switch between unicast or broadcast). In contrast, classical P systems, both tree and graph based P systems, seem to focus on a statical approach. We support our view with a simple but realistic example, inspired from computer networking, modeled as a hP system with a shared communication line (broadcast channel). In Part B of this paper we will explore this model further and support it with a more extensive set of examples

    Mass inflation in f(R) gravity: A conjecture on the resolution of the mass inflation singularity

    Full text link
    We study gravitational collapse of a charged black hole in f(R) gravity using double-null formalism. We require cosmological stability to f(R) models; we used the Starobinsky model and the R + (1/2)cR^2 model. Charged black holes in f(R) gravity can have a new type of singularity due to higher curvature corrections, the so-called f(R)-induced singularity, although it is highly model-dependent. As the advanced time increases, the internal structure will approach the Cauchy horizon, which may not be an inner apparent horizon. There is mass inflation as one approaches the Cauchy horizon and hence the Cauchy horizon may be a curvature singularity with nonzero area. However, the Ricci scalar is finite for an out-going null observer. This can be integrated as follows: Cosmologically stable higher curvature corrections of the Ricci scalar made it bounded even in the presence of mass inflation. Finally, we conjecture that if there is a general action including general higher curvature corrections with cosmological stability, then the corrections can make all curvature components finite even in the presence of mass inflation. This might help us to resolve the problem of inner horizon instability of regular black hole models.Comment: 31 pages, 15 figure

    Holographic Meson Spectra in the Dense Medium with Chiral Condensate

    Full text link
    We study two 1/Nc1/N_c effects on the meson spectra by using the AdS/CFT correspondence where the 1/Nc1/N_c corrections from the chiral condensate and the quark density are controlled by the gravitational backreaction of the massive scalar field and U(1) gauge field respectively. The dual geometries with zero and nonzero current quark masses are obtained numerically. We discuss meson spectra and binding energy of heavy quarkonium with the subleading corrections in the hard wall model.Comment: 16 pages, 4 figure

    Observation of Scarred Modes in Asymmetrically Deformed Microcylinder Lasers

    Full text link
    We report observation of lasing in the scarred modes in an asymmetrically deformed microcavity made of liquid jet. The observed scarred modes correspond to morphology-dependent resonance of radial mode order 3 with their Q values in the range of 10^6. Emission directionality is also observed, corresponding to a hexagonal unstable periodic orbit.Comment: 4 pages, 6 figure
    corecore