20 research outputs found

    Working times in atypical forms of employment: the special case of part-time work

    No full text
    Chapitre 5, à la suite de la conférence ACSEG 2001 à RennesIn the present article, we attempt to devise a typology of forms of part-time employment by applying a widely used neuronal methodology called Kohonen maps. Starting out with data that we describe using category-specific variables, we show how it is possible to represent observations and the modalities of the variables that define them simultaneously, on a single map. This allows us to ascertain, and to try to describe, the main categories of part-time employment

    Multiple-scale interactions structure macroinvertebrate assemblages associated with kelp understory algae

    Get PDF
    Aim: Kelp forests provide habitat and food that supports a high diversity of flora and fauna. While numerous studies have described macroinvertebrates associated with kelp blades, stipes and holdfasts, a key kelp forest microhabitat, epilithic understory algae, remains poorly studied. Here, we used a macroecological approach and artificial seaweed units (ASUs) to explore the effects of ocean climate, wave exposure and habitat complexity on understory algal associated macroinvertebrate assemblages within Laminaria hyperborea forests in the United Kingdom. Location: 9° latitudinal gradient along the north and west coasts of the United Kingdom. Methods: Replicate ASUs comprising four different habitat complexities were deployed under mature L. hyperborea at 2 sites (along a wave exposure gradient, separated by km) within each of 4 locations (separated by 100s km) nested within two regions (warm and cold, spanning 9° of latitude). After 5 months in situ, the ASUs were collected and macroinvertebrates were identified to species level and enumerated. Results: Habitat complexity and wave exposure both influenced macroinvertebrate assemblage structure, but results also showed clear effects of ocean climate, with macroinvertebrate assemblages differing between warm and cool regions, primarily driven by higher diversity and evenness in the warmer region and greater abundance in the cooler region. Main conclusions: Predicted warming and a shift to less complex turf-forming algal assemblages are likely to alter the structure of macroinvertebrate assemblages associated with understory algae, with potential implications for kelp forest food web dynamics

    Artificial shorelines lack natural structural complexity across scales

    Get PDF
    From microbes to humans, habitat structural complexity plays a direct role in the provision of physical living space and increased complexity supports higher biodiversity and ecosystem functioning across biomes. Natural coastlines are structurally complex transition zones between land and sea that support diverse ecological communities but are under increasing pressure from human activity. Coastal development and the construction of artificial shorelines are changing our landscape and altering biodiversity patterns as humans seek both socio-economic benefits and protection from coastal storms, flooding, and erosion. In this study, we evaluate how much structural complexity is missing, and at which scales, with the creation of artificial structures compared to naturally occurring rocky shores. We quantified the structural complexity of both artificial and natural shores at resolutions from 1 mm through to 10s of m using three remote sensing platforms (handheld camera, terrestrial laser scanner and uncrewed aerial vehicles) across both artificial and natural shorelines. Natural shorelines were approximately 20-50 % more structurally complex and offered greater structural variation between locations. In contrast, artificial shorelines were more structurally homogenous and typically deficient in structural complexity across scales. Our findings reinforce concerns that replacing natural rocky shorelines with artificial structures simplifies coastlines at organism-relevant scales. Furthermore, we offer much-needed insight into how structures might be modified to more closely capture the complexity of natural shorelines that support biodiversity

    Intertidal bathymetry extraction with multispectral images: A logistic regression approach

    No full text
    In this study, a methodology to estimate the intertidal bathymetry from multispectral remote sensing images is presented. The technique is based on the temporal variability of the water and the intertidal zone reflectance and their correlation with the tidal height. The water spectral behavior is characterized by high absorption at the infrared (IR) band or radiation with higher wavelengths. Due to tidal cycles, pixels on the intertidal zone have higher temporal variability on the near IR spectral reflectance. The variability of IR reflectivity in time is modeled through a sigmoid function of three parameters, where the inflection parameter corresponds to the pixel elevation. The methodology was tested at the Tagus river estuary in Lisbon, Portugal, and at the Bijagós archipelago, in the West African nation of Guinea-Bissau. Multispectral images from Sentinel-2 satellites were used, after atmospheric corrections from ACOLITE processor and the derived bathymetric model validated with in situ data. The presented method does not require additional depth data for calibration, and the output can generate intertidal digital elevation models at 10 m spatial resolution, without any manual editing by the operator. The results show a standard deviation of 0.34 m at the Tagus tidal zone, with −0.50 m bias, performing better than the Stumpf ratio transform algorithm, also applied to the test areas to derive intertidal bathymetry. This methodology can be used to update intertidal elevation models with clear benefits to monitoring of intertidal dynamics, morphodynamic modeling, and cartographic update

    Evaluation of hf radar wave measurements in iberian peninsula by comparison with satellite altimetry and in situ wave buoy observations

    No full text
    The skills of CODAR SeaSonde coastal high-frequency radars (HFR) located in the West Iberian Peninsula on measuring wave parameters are compared to in situ (buoy) and satellite altimeters (SA) wave observations. Significant wave heights (SWH), wave periods, and wave directions are compared over a time window of 36-months, from January 2017 to December 2019. The ability of HFR systems to capture extreme wave events is also assessed by comparing SWH measurements during the Emma storm, which hit the Iberian Peninsula in March 2018. The analysis presented in this study shows a slight overestimation of the SWH by the HFR systems. Comparisons with in situ observations revealed correlation coefficients (R) of the order of 0.69–0.87, biases below 0.60 m, root-mean-squared errors (RMSE) between 0.89 m to 1.18 m, and a slope regression between 1.01 and 1.26. Using buoy observations as reference ground truth, the comparisons with SA revealed Rs higher than 0.94, biases under 0.19 m, and RMSEs between 0.17 m and 0.42 m. Since in situ observations do not overlap all the HFR range cells (RC), and its correlation coefficients with SA have shown good agreement (R > 0.94), Sentinel-3 SA (SRAL) SWH measurements are further used for the validation of the HFR systems SWH observations. The comparison between the HFR and the SA collocated SWH observations allowed the evaluation of the ability of the radars to retrieve wave data as a function of the distance to the coast, particularly during extreme wave events. The comparison of the lower frequency (4.86 MHz) HFR coastal radars with the SA measurements showed an R of 0.94–0.99, a negative but reduced bias (−0.37), and an RMSE of 0.53 m. The higher frequency HFR systems (12–13.5 MHz) showed R between 0.53 and 0.82, and a clear overestimation of the SWH by the HFR sites

    La Trinitat del amor : comedia catalana en un acte, en vers [Ms. 887]

    No full text
    [2], 43 p. ; 22 cm. -- CĂČpia de representaci

    Spatial variability in the structure of fish assemblages associated with Laminaria hyperborea forests in the NE Atlantic

    Get PDF
    Understanding fish-habitat associations is critical for ecosystem-based approaches to management and conservation. Kelp species, which are estimated to inhabit around 25% of the world's coastline and underpin highly productive and biodiverse ecosystems, are widely recognised as important nursery and foraging habitats for coastal fish species. However, quantitative assessments of fish assemblages within kelp forests are lacking for many regions. Here, we used Baited Remote Underwater Video (BRUV) and Underwater Visual Census (UVC) to quantify fish assemblages in Laminaria hyperborea forests at eight shallow subtidal rocky reefs that spanned 9° of latitude in the United Kingdom (UK). Fish assemblages were a ubiquitous and conspicuous component of kelp forest communities at all sites. BRUV surveys recorded marked regional-scale variability, with latitudinal shifts in assemblage structure and particularly distinct assemblages recorded in southwest England. These patterns were largely due to greater abundances of Pollachius spp. (i.e. saithe and pollock) in northern regions and higher numbers of Gobiusculus flavescens (two-spotted goby) and labrid species (i.e. rock cook, goldsinny and ballan wrasses) in southern regions. Unlike BRUVs, UVC surveys did not detect significant regional-scale variation in assemblage structure but did detect significant site-level differences, highlighting differences between the two techniques. BRUV surveys also recorded clear latitudinal trends in richness, with more taxa recorded at lower latitudes. Fish assemblages in the NE Atlantic have been, and will continue to be, impacted by ocean warming and fishing activities. Greater spatiotemporal coverage of kelp forest surveys and ongoing robust monitoring is needed to better understand and manage future ecological changes
    corecore