229 research outputs found

    Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3

    Full text link
    Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-α-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2 R ,4 R )-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N -acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65724/1/j.1471-4159.2003.02321.x.pd

    PDGF-B-driven gliomagenesis can occur in the absence of the proteoglycan NG2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last years, the transmembrane proteoglycan NG2 has gained interest as a therapeutic target for the treatment of diverse tumor types, including gliomas, because increases of its expression correlate with dismal prognosis. NG2 has been shown to function as a co-receptor for PDGF ligands whose aberrant expression is common in gliomas. We have recently generated a glioma model based on the overexpression of PDGF-B in neural progenitors and here we investigated the possible relevance of NG2 during PDGF-driven gliomagenesis.</p> <p>Methods</p> <p>The survival curves of NG2-KO mice overexpressing PDGF-B were compared to controls by using a Log-rank test. The characteristics of tumors induced in NG2-KO were compared to those of tumors induced in wild type mice by immunostaining for different cell lineage markers and by transplantation assays in adult mice.</p> <p>Results</p> <p>We showed that the lack of NG2 does not appreciably affect any of the characterized steps of PDGF-driven brain tumorigenesis, such as oligodendrocyte progenitor cells (OPC) induction, the recruitment of bystander OPCs and the progression to full malignancy, which take place as in wild type animals.</p> <p>Conclusions</p> <p>Our analysis, using both NG2-KO mice and a miRNA based silencing approach, clearly demonstrates that NG2 is not required for PDGF-B to efficiently induce and maintain gliomas from neural progenitors. On the basis of the data obtained, we therefore suggest that the role of NG2 as a target molecule for glioma treatment should be carefully reconsidered.</p

    Genetic aberrations in glioblastoma multiforme: translocation of chromosome 10 in an O-2A-like cell line

    Get PDF
    We have examined the genetic aberrations in two near-diploid glioblastoma multiforme cell lines that appear to have arisen from different glial lineages. One cell line, Hu-O-2A/Gb1, expresses antigens and metabolic profiles characteristic of the oligodendrocyte-type-2 astrocyte (0-2A) lineage of the rat central nervous system. This line generates, in vitro, cells with characteristics of 0-2A progenitor cells, oligodendrocytes and astrocytes. The second cell line, IN1434, is derived from an astrocyte or a precursor cell restricted to astrocytic differentiation. In Hu-O-2A/Gb1 the sole homologue of chromosome 10 is disrupted at band 10p11–12.1 by translocation with chromosomes X and 15. The translocation breakpoint is localized between genetic markers D10S2103 and [D10S637, D10S1962, D10S355]. Other aberrations include a 5;14 translocation, deletion of the long and short arms of chromosome 16 and loss of one copy of the CDKN2 gene. IN1434 cells share some cytogenetic abnormalities with Hu-O-2A/Gb1 cells, despite their apparent derivation from a different biological origin, but also have translocations involving the long and short arms of chromosome 1 and the long arm of chromosome 7, and deletion of chromosome 13 at bands 13q12–21. © 1999 Cancer Research Campaig

    The Chemokine Receptor CXCR4 Strongly Promotes Neuroblastoma Primary Tumour and Metastatic Growth, but not Invasion

    Get PDF
    Neuroblastoma (NB) is a heterogeneous, and particularly malignant childhood neoplasm in its higher stages, with a propensity to form metastasis in selected organs, in particular liver and bone marrow, and for which there is still no efficient treatment available beyond surgery. Recent evidence indicates that the CXCR4/CXCL12 chemokine/receptor axis may be involved in promoting NB invasion and metastasis. In this study, we explored the potential role of CXCR4 in the malignant behaviour of NB, using a combination of in vitro functional analyses and in vivo growth and metastasis assessment in an orthotopic NB mouse model. We show here that CXCR4 overexpression in non-metastatic CXCR4-negative NB cells IGR-NB8 and in moderately metastatic, CXCR4 expressing NB cells IGR-N91, strongly increased tumour growth of primary tumours and liver metastases, without altering the frequency or the pattern of metastasis. Moreover shRNA-mediated knock-down experiments confirmed our observations by showing that silencing CXCR4 in NB cells impairs in vitro and almost abrogates in vivo growth. High levels of CXCL12 were detected in the mouse adrenal gland (the primary tumour site), and in the liver suggesting a paracrine effect of host-derived CXCL12 on NB growth. In conclusion, this study reveals a yet unreported NB-specific predominant growth and survival-promoting role of CXCR4, which warrants a critical reconsideration of the role of CXCR4 in the malignant behaviour of NB and other cancers

    The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib

    Get PDF
    The activation of glucocorticoid receptors (GR) by glucocorticoids increases stress-related memory through the activation of the MAPK signaling pathway and the downstream transcription factor Egr-1. Here, using converging in vitro and in vivo approaches, respectively, GR-expressing cell lines, culture of hippocampal neurons, and GR genetically modified mice (GRNesCre), we identified synapsin-Ia/Ib as one of the effectors of the glucocorticoid signaling cascade. Stress and glucocorticoid-induced activation of the GR modulate synapsin-Ia/Ib through two complementary mechanisms. First, glucocorticoids driving Egr-1 expression increase the expression of synapsin-Ia/Ib, and second, glucocorticoids driving MAPK activation increase its phosphorylation. Finally, we showed that blocking fucosylation of synapsin-Ia/Ib in the hippocampus inhibits its expression and prevents the glucocorticoid-mediated increase in stress-related memory. In conclusion, our data provide a complete molecular pathway (GR/Egr-1/MAPK/Syn-Ia/Ib) through which stress and glucocorticoids enhance the memory of stress-related events and highlight the function of synapsin-Ia/Ib as molecular effector of the behavioral effects of stress

    Growth requirements in vitro of oligodendrocyte cell lines and neonatal rat brain oligodendrocytes.

    No full text

    Growth of a rat neuroblastoma cell line in serum-free supplemented medium.

    No full text
    corecore