6,054 research outputs found

    An Online Approach to Dynamic Channel Access and Transmission Scheduling

    Full text link
    Making judicious channel access and transmission scheduling decisions is essential for improving performance as well as energy and spectral efficiency in multichannel wireless systems. This problem has been a subject of extensive study in the past decade, and the resulting dynamic and opportunistic channel access schemes can bring potentially significant improvement over traditional schemes. However, a common and severe limitation of these dynamic schemes is that they almost always require some form of a priori knowledge of the channel statistics. A natural remedy is a learning framework, which has also been extensively studied in the same context, but a typical learning algorithm in this literature seeks only the best static policy, with performance measured by weak regret, rather than learning a good dynamic channel access policy. There is thus a clear disconnect between what an optimal channel access policy can achieve with known channel statistics that actively exploits temporal, spatial and spectral diversity, and what a typical existing learning algorithm aims for, which is the static use of a single channel devoid of diversity gain. In this paper we bridge this gap by designing learning algorithms that track known optimal or sub-optimal dynamic channel access and transmission scheduling policies, thereby yielding performance measured by a form of strong regret, the accumulated difference between the reward returned by an optimal solution when a priori information is available and that by our online algorithm. We do so in the context of two specific algorithms that appeared in [1] and [2], respectively, the former for a multiuser single-channel setting and the latter for a single-user multichannel setting. In both cases we show that our algorithms achieve sub-linear regret uniform in time and outperforms the standard weak-regret learning algorithms.Comment: 10 pages, to appear in MobiHoc 201

    Data Dissemination Performance in Large-Scale Sensor Networks

    Full text link
    As the use of wireless sensor networks increases, the need for (energy-)efficient and reliable broadcasting algorithms grows. Ideally, a broadcasting algorithm should have the ability to quickly disseminate data, while keeping the number of transmissions low. In this paper we develop a model describing the message count in large-scale wireless sensor networks. We focus our attention on the popular Trickle algorithm, which has been proposed as a suitable communication protocol for code maintenance and propagation in wireless sensor networks. Besides providing a mathematical analysis of the algorithm, we propose a generalized version of Trickle, with an additional parameter defining the length of a listen-only period. This generalization proves to be useful for optimizing the design and usage of the algorithm. For single-cell networks we show how the message count increases with the size of the network and how this depends on the Trickle parameters. Furthermore, we derive distributions of inter-broadcasting times and investigate their asymptotic behavior. Our results prove conjectures made in the literature concerning the effect of a listen-only period. Additionally, we develop an approximation for the expected number of transmissions in multi-cell networks. All results are validated by simulations

    Queues with random back-offs

    Get PDF
    We consider a broad class of queueing models with random state-dependent vacation periods, which arise in the analysis of queue-based back-off algorithms in wireless random-access networks. In contrast to conventional models, the vacation periods may be initiated after each service completion, and can be randomly terminated with certain probabilities that depend on the queue length. We examine the scaled queue length and delay in a heavy-traffic regime, and demonstrate a sharp trichotomy, depending on how the activation rate and vacation probability behave as function of the queue length. In particular, the effect of the vacation periods may either (i) completely vanish in heavy-traffic conditions, (ii) contribute an additional term to the queue lengths and delays of similar magnitude, or even (iii) give rise to an order-of-magnitude increase. The heavy-traffic asymptotics are obtained by combining stochastic lower and upper bounds with exact results for some specific cases. The heavy-traffic trichotomy provides valuable insight in the impact of the back-off algorithms on the delay performance in wireless random-access networks

    Universality of Load Balancing Schemes on Diffusion Scale

    Full text link
    We consider a system of NN parallel queues with identical exponential service rates and a single dispatcher where tasks arrive as a Poisson process. When a task arrives, the dispatcher always assigns it to an idle server, if there is any, and to a server with the shortest queue among dd randomly selected servers otherwise (1≤d≤N)(1 \leq d \leq N). This load balancing scheme subsumes the so-called Join-the-Idle Queue (JIQ) policy (d=1)(d = 1) and the celebrated Join-the-Shortest Queue (JSQ) policy (d=N)(d = N) as two crucial special cases. We develop a stochastic coupling construction to obtain the diffusion limit of the queue process in the Halfin-Whitt heavy-traffic regime, and establish that it does not depend on the value of dd, implying that assigning tasks to idle servers is sufficient for diffusion level optimality
    • …
    corecore