1,777 research outputs found
Telluric correction in the near-infrared: Standard star or synthetic transmission?
Context. The atmospheric absorption of the Earth is an important limiting
factor for ground-based spectroscopic observations and the near-infrared and
infrared regions are the most affected. Several software packages that produce
a synthetic atmospheric transmission spectrum have been developed to correct
for the telluric absorption; these are Molecfit, TelFit, and TAPAS. Aims. Our
goal is to compare the correction achieved using these three telluric
correction packages and the division by a telluric standard star. We want to
evaluate the best method to correct near-infrared high-resolution spectra as
well as the limitations of each software package and methodology. Methods. We
applied the telluric correction methods to CRIRES archival data taken in the J
and K bands. We explored how the achieved correction level varies depending on
the atmospheric T-P profile used in the modelling, the depth of the atmospheric
lines, and the molecules creating the absorption. Results. We found that the
Molecfit and TelFit corrections lead to smaller residuals for the water lines.
The standard star method corrects best the oxygen lines. The Molecfit package
and the standard star method corrections result in global offsets always below
0.5% for all lines; the offset is similar with TelFit and TAPAS for the H2O
lines and around 1% for the O2 lines. All methods and software packages result
in a scatter between 3% and 7% inside the telluric lines. The use of a tailored
atmospheric profile for the observatory leads to a scatter two times smaller,
and the correction level improves with lower values of precipitable water
vapour. Conclusions. The synthetic transmission methods lead to an improved
correction compared to the standard star method for the water lines in the J
band with no loss of telescope time, but the oxygen lines were better corrected
by the standard star method.Comment: 18 pages, 13 figures, Accepted to A&
Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to beta Pictoris b and SPHERE observations
We aim to interpret future photometric and spectral measurements from these
instruments, in terms of physical parameters of the planets, with an
atmospheric model using a minimal number of assumptions and parameters.
We developed Exoplanet Radiative-convective Equilibrium Model (Exo-REM) to
analyze the photometric and spectro- scopic data of directly imaged planets.
The input parameters are a planet's surface gravity (g), effective temperature
(Teff ), and elemental composition. The model predicts the equilibrium
temperature profile and mixing ratio profiles of the most important gases.
Opacity sources include the H2-He collision-induced absorption and molecular
lines from eight compounds (including CH4 updated with the Exomol line list).
Absorption by iron and silicate cloud particles is added above the expected
condensation levels with a fixed scale height and a given optical depth at some
reference wavelength. Scattering was not included at this stage.
We applied Exo-REM to photometric and spectral observations of the planet
beta Pictoris b obtained in a series of near-IR filters. We derived Teff = 1550
+- 150 K, log(g) = 3.5 +- 1, and radius R = 1.76 +- 0.24 RJup (2-{\sigma} error
bars from photometric measurements). These values are comparable to those found
in the literature, although with more conservative error bars, consistent with
the model accuracy. We were able to reproduce, within error bars, the J- and
H-band spectra of beta Pictoris b. We finally investigated the precision to
which the above parameterComment: 15 pages, 14 figures, accepted by A&
Sparse aperture masking at the VLT II. Detection limits for the eight debris disks stars Pic, AU Mic, 49 Cet, Tel, Fomalhaut, g Lup, HD181327 and HR8799
Context. The formation of planetary systems is a common, yet complex
mechanism. Numerous stars have been identified to possess a debris disk, a
proto-planetary disk or a planetary system. The understanding of such formation
process requires the study of debris disks. These targets are substantial and
particularly suitable for optical and infrared observations. Sparse Aperture
masking (SAM) is a high angular resolution technique strongly contributing to
probe the region from 30 to 200 mas around the stars. This area is usually
unreachable with classical imaging, and the technique also remains highly
competitive compared to vortex coronagraphy. Aims. We aim to study debris disks
with aperture masking to probe the close environment of the stars. Our goal is
either to find low mass companions, or to set detection limits. Methods. We
observed eight stars presenting debris disks ( Pictoris, AU
Microscopii, 49 Ceti, Telescopii, Fomalhaut, g Lupi, HD181327 and
HR8799) with SAM technique on the NaCo instrument at the VLT. Results. No close
companions were detected using closure phase information under 0.5 of
separation from the parent stars. We obtained magnitude detection limits that
we converted to Jupiter masses detection limits using theoretical isochrones
from evolutionary models. Conclusions. We derived upper mass limits on the
presence of companions in the area of few times the diffraction limit of the
telescope around each target star.Comment: 7 pages, All magnitude detection limits maps are only available in
electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5
beta Pic b position relative to the Debris Disk
Context. We detected in 2009 a giant, close-by planet orbiting {\beta} Pic, a
young star surrounded with a disk, extensively studied for more than 20 years.
We showed that if located on an inclined orbit, the planet could explain
several peculiarities of {\beta} Pictoris system. However, the available data
did not permit to measure the inclination of {\beta} Pic b with respect to the
disk, and in particular to establish in which component of the disk - the main,
extended disk or the inner inclined component/disk-, the planet was located.
Comparison between the observed planet position and the disk orientation
measured on previous imaging data was not an option because of potential biases
in the measurements. Aims. Our aim is to measure precisely the planet location
with respect to the dust disk using a single high resolution image, and
correcting for systematics or errors that degrades the precision of the disk
and planet relative position measurements. Methods. We gathered new NaCo data
at Ks band, with a set-up optimized to derive simultaneously the orientation(s)
of the disk(s) and that of the planet. Results. We show that the projected
position of {\beta} Pic b is above the midplane of the main disk. With the
current data and knowledge on the system, this implies that {\beta} Pic b
cannot be located in the main disk. The data rather suggest the planet being
located in the inclined component.Comment: 13 pages, 6 figures, to appear in Astronomy and Astrophysic
Pulsar Prospects for the Cherenkov Telescope Array
In the last few years, the Fermi-LAT telescope has discovered over a 100
pulsars at energies above 100 MeV, increasing the number of known gamma-ray
pulsars by an order of magnitude. In parallel, imaging Cherenkov telescopes,
such as MAGIC and VERITAS, have detected for the first time VHE pulsed
gamma-rays from the Crab pulsar. Such detections have revealed that the Crab
VHE spectrum follows a power-law up to at least 400 GeV, challenging most
theoretical models, and opening wide possibilities of detecting more pulsars
from the ground with the future Cherenkov Telescope Array (CTA). In this
contribution, we study the capabilities of CTA for detecting Fermi pulsars. For
this, we extrapolate their spectra with "Crab-like" power-law tails in the VHE
range, as suggested by the latest MAGIC and VERITAS results.Comment: 4 pages, 3 figures. In Proceedings of the 2012 Heidelberg Symposium
on High Energy Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184
A survey of young, nearby, and dusty stars to understand the formation of wide-orbit giant planets
Direct imaging has confirmed the existence of substellar companions on wide
orbits. To understand the formation and evolution mechanisms of these
companions, the full population properties must be characterized. We aim at
detecting giant planet and/or brown dwarf companions around young, nearby, and
dusty stars. Our goal is also to provide statistics on the population of giant
planets at wide-orbits and discuss planet formation models. We report a deep
survey of 59 stars, members of young stellar associations. The observations
were conducted with VLT/NaCo at L'-band (3.8 micron). We used angular
differential imaging to reach optimal detection performance. A statistical
analysis of about 60 % of the young and southern A-F stars closer than 65 pc
allows us to derive the fraction of giant planets on wide orbits. We use
gravitational instability models and planet population synthesis models
following the core-accretion scenario to discuss the occurrence of these
companions. We resolve and characterize new visual binaries and do not detect
any new substellar companion. The survey's median detection performance reaches
contrasts of 10 mag at 0.5as and 11.5 mag at 1as. We find the occurrence of
planets to be between 10.8-24.8 % at 68 % confidence level assuming a uniform
distribution of planets in the interval 1-13 Mj and 1-1000 AU. Considering the
predictions of formation models, we set important constraints on the occurrence
of massive planets and brown dwarf companions that would have formed by GI. We
show that this mechanism favors the formation of rather massive clump (Mclump >
30 Mj) at wide (a > 40 AU) orbits which might evolve dynamically and/or
fragment. For the population of close-in giant planets that would have formed
by CA, our survey marginally explore physical separations (<20 AU) and cannot
constrain this population
Confirmation of the planet around HD 95086 by direct imaging
VLT/NaCo angular differential imaging at L' (3.8 microns) revealed a probable
giant planet comoving with the young and early-type HD 95086 also known to
harbor an extended debris disk. The discovery was based on the proper motion
analysis of two datasets spanning 15 months. However, the second dataset
suffered from bad atmospheric conditions, which limited the significance of the
redetection at the 3 sigma level. In this Letter, we report new VLT/NaCo
observations of HD 95086 obtained on 2013 June 26-27 at L' to recover the
planet candidate. We unambiguously redetect the companion HD 95086 b with
multiple independent pipelines at a signal-to-noise ratio greater than or equal
to 5. Combined with previously reported measurements, our astrometry decisively
shows that the planet is comoving with HD 95086 and inconsistent with a
background object. With a revised mass of 5 pm 2 Jupiter masses, estimated from
its L' photometry and "hot-start" models at 17 pm 4 Myr, HD 95086 b becomes a
new benchmark for further physical and orbital characterization of young giant
planets.Comment: accepted for publication to AP
Hunting for brown dwarf binaries and testing atmospheric models with X-Shooter
The determination of the brown dwarf binary fraction may contribute to the
understanding of the substellar formation mechanisms. Unresolved brown dwarf
binaries may be revealed through their peculiar spectra or the discrepancy
between optical and near-infrared spectral type classification.
We obtained medium-resolution spectra of 22 brown dwarfs with these
characteristics using the X-Shooter spectrograph at the VLT.
We aimed to identify brown dwarf binary candidates, and to test if the
BT-Settl 2014 atmospheric models reproduce their observed spectra.
To find binaries spanning the L-T boundary, we used spectral indices and
compared the spectra of the selected candidates to single spectra and synthetic
binary spectra. We used synthetic binary spectra with components of same
spectral type to determine as well the sensitivity of the method to this class
of binaries.
We identified three candidates to be combination of L plus T brown dwarfs. We
are not able to identify binaries with components of similar spectral type. In
our sample, we measured minimum binary fraction of .
From the best fit of the BT-Settl models 2014 to the observed spectra, we
derived the atmospheric parameters for the single objects. The BT-Settl models
were able to reproduce the majority of the SEDs from our objects, and the
variation of the equivalent width of the RbI (794.8 nm) and CsI (852.0 nm)
lines with the spectral type. Nonetheless, these models did not reproduce the
evolution of the equivalent widths of the NaI (818.3 nm and 819.5 nm) and KI
(1253 nm) lines with the spectral type.Comment: Accepted for publication in MNRA
New constraints on the formation and settling of dust in the atmospheres of young M and L dwarfs
We obtained medium-resolution near-infrared spectra of seven young M9.5-L3
dwarfs classified in the optical. We aim to confirm the low surface gravity of
the objects in the NIR. We also test whether atmospheric models correctly
represent the formation and the settling of dust clouds in the atmosphere of
young late-M and L dwarfs. We used ISAAC at VLT to obtain the spectra of the
targets. We compared them to those of mature and young BD, and young late-type
companions to nearby stars with known ages, in order to identify and study
gravity-sensitive features. We computed spectral indices weakly sensitive to
the surface gravity to derive near-infrared spectral types. Finally, we found
the best fit between each spectrum and synthetic spectra from the BT-Settl 2010
and 2013 models. Using the best fit, we derived the atmospheric parameters of
the objects and identify which spectral characteristics the models do not
reproduce. We confirmed that our objects are young BD and we found NIR spectral
types in agreement with the ones determined at optical wavelengths. The
spectrum of the L2-gamma dwarf 2MASSJ2322-6151 reproduces well the spectrum of
the planetary mass companion 1RXS J1609-2105b. BT-Settl models fit the spectra
and the 1-5 m SED of the L0-L3 dwarfs for temperatures between 1600-2000
K. But the models fail to reproduce the shape of the H band, and the NIR slope
of some of our targets. This fact, and the best fit solutions found with
super-solar metallicity are indicative of a lack of dust, in particular at high
altitude, in the cloud models. The modeling of the vertical mixing and of the
grain growth will be revised in the next version of the BT-Settl models. These
revisions may suppress the remaining non-reproducibilities.Comment: Accepted in A&A, February 6, 201
Discovery of a Low-Mass Companion to the F7V star HD 984
We report the discovery of a low-mass companion to the nearby (d = 47 pc) F7V
star HD 984. The companion is detected 0.19" away from its host star in the L'
band with the Apodizing Phase Plate on NaCo/VLT and was recovered by L'-band
non-coronagraphic imaging data taken a few days later. We confirm the companion
is co-moving with the star with SINFONI integral field spectrograph H+K data.
We present the first published data obtained with SINFONI in pupil-tracking
mode. HD 984 has been argued to be a kinematic member of the 30 Myr-old Columba
group, and its HR diagram position is not altogether inconsistent with being a
ZAMS star of this age. By consolidating different age indicators, including
isochronal age, coronal X-ray emission, and stellar rotation, we independently
estimate a main sequence age of 11585 Myr (95% CL) which does not rely on
this kinematic association. The mass of directly imaged companions are usually
inferred from theoretical evolutionary tracks, which are highly dependent on
the age of the star. Based on the age extrema, we demonstrate that with our
photometric data alone, the companion's mass is highly uncertain: between 33
and 96 M (0.03-0.09 M) using the COND evolutionary
models. We compare the companion's SINFONI spectrum with field dwarf spectra to
break this degeneracy. Based on the slope and shape of the spectrum in the
H-band, we conclude that the companion is an M dwarf. The age of the
system is not further constrained by the companion, as M dwarfs are poorly fit
on low-mass evolutionary tracks. This discovery emphasizes the importance of
obtaining a spectrum to spectral type companions around F-stars.Comment: Accepted for publication in MNRAS, 10 pages, 5 figure
- …