196 research outputs found

    Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies

    Get PDF
    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could be used more effectively if they benefited from the scientific and technical resources currently available for more common breeds. Last but not least, public policies need to enable improved information concerning the genetic resources and breeding tools available for the agroecological management of livestock production systems, and facilitate its assimilation by farmers and farm technicians

    The impact of genetic selection on greenhouse-gas emissions in Australian dairy cattle

    Get PDF
    In Australia, dairy cattle account for ~12% of the nation’s agricultural greenhouse-gas (GHG) emissions. Genetic selection has had a positive impact, reducing GHG emissions from dairy systems mainly due to increased production per cow, which has led to (1) requiring fewer cows to produce the same amount of milk and (2) lowering emissions per unit of milk produced (emission intensity). The objective of the present study was to evaluate the consequences of previous and current genetic-selection practices on carbon emissions, using realised and predicted responses to selection for key traits that are included in the Australian national breeding objective. A farm model was used to predict the carbon dioxide equivalent (CO₂-eq) emissions per unit change of these traits, while holding all other traits constant. Estimates of the realised change in annual CO₂-eq emissions per cow over the past decade were made by multiplying predicted CO₂-eq emissions per unit change of each trait under selection by the realised rates of genetic gain in each of those traits. The total impact is estimated to be an increase of 55 kg CO₂-eq/cow.year after 10 years of selection. The same approach was applied to future CO₂-eq emissions, except predicted rates of genetic gain assumed to occur over the next decade through selection on the Balanced Performance Index (BPI) were used. For an increase of AU100inBPI( 10yearsofgeneticimprovement),wepredictthattheincreaseofpercowemissionswillbereducedto37kgCO2eq/cow.year.Sincemilkproductiontraitsarealargepartofthebreedinggoal,theGHGemittedperunitofmilkproducedwillreduceasaresultofimprovementsinefficiencyanddilutionofemissionsperlitreofmilkproducedatarateestimatedtobe35.7gCO2eq/kgmilksolidsperyearinthepastdecadeandispredictedtoreduceto29.5gCO2eq/kgmilksolidsperyearafteraconservative10yearimprovementinBPI(AU100 in BPI (~10 years of genetic improvement), we predict that the increase of per cow emissions will be reduced to 37 kg CO₂-eq/cow.year. Since milk-production traits are a large part of the breeding goal, the GHG emitted per unit of milk produced will reduce as a result of improvements in efficiency and dilution of emissions per litre of milk produced at a rate estimated to be 35.7 g CO₂-eq/kg milk solids per year in the past decade and is predicted to reduce to 29.5 g CO₂-eq/kg milk solids per year after a conservative 10-year improvement in BPI (AU100). In fact, cow numbers have decreased over the past decade and production has increased; altogether, we estimate that the net impact has been a reduction of CO₂-eq emissions of ~1.0% in total emissions from the dairy industry per year. Using two future scenarios of either keeping the number of cows or amount of product static, we predict that net GHG emissions will reduce by ~0.6%/year of total dairy emissions if milk production remains static, compared with 0.3%/year, if cow numbers remain the same and there is genetic improvement in milk-production traits

    Use of partial least squares regression to impute SNP genotypes in Italian Cattle breeds

    Get PDF
    Background The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used. Methods Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content. Results In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip. Conclusions Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available

    Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools

    Get PDF
    In a project on the biodiversity of chickens funded by the European Commission (EC), eight laboratories collaborated to assess the genetic variation within and between 52 populations from a wide range of chicken types. Twenty-two di-nucleotide microsatellite markers were used to genotype DNA pools of 50 birds from each population. The polymorphism measures for the average, the least polymorphic population (inbred C line) and the most polymorphic population (Gallus gallus spadiceus) were, respectively, as follows: number of alleles per locus, per population: 3.5, 1.3 and 5.2; average gene diversity across markers: 0.47, 0.05 and 0.64; and proportion of polymorphic markers: 0.91, 0.25 and 1.0. These were in good agreement with the breeding history of the populations. For instance, unselected populations were found to be more polymorphic than selected breeds such as layers. Thus DNA pools are effective in the preliminary assessment of genetic variation of populations and markers. Mean genetic distance indicates the extent to which a given population shares its genetic diversity with that of the whole tested gene pool and is a useful criterion for conservation of diversity. The distribution of population-specific (private) alleles and the amount of genetic variation shared among populations supports the hypothesis that the red jungle fowl is the main progenitor of the domesticated chicken

    Genetic variability in the Skyros pony and its relationship with other Greek and foreign horse breeds

    Get PDF
    In Greece, seven native horse breeds have been identified so far. Among these, the Skyros pony is outstanding through having a distinct phenotype. In the present study, the aim was to assess genetic diversity in this breed, by using different types of genetic loci and available genealogical information. Its relationships with the other Greek, as well as foreign, domestic breeds were also investigated. Through microsatellite and pedigree analysis it appeared that the Skyros presented a similar level of genetic diversity to the other European breeds. Nevertheless, comparisons between DNA-based and pedigree-based results revealed that a loss of genetic diversity had probably already occurred before the beginning of breed registration. Tests indicated the possible existence of a recent bottleneck in two of the three main herds of Skyros pony. Nonetheless, relatively high levels of heterozygosity and Polymorphism Information Content indicated sufficient residual genetic variability, probably useful in planning future strategies for breed conservation. Three other Greek breeds were also analyzed. A comparison of these with domestic breeds elsewhere, revealed the closest relationships to be with the Middle Eastern types, whereas the Skyros itself remained isolated, without any close relationship, whatsoever

    Genetic analysis of local Vietnamese chickens provides evidence of gene flow from wild to domestic populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies suggested that multiple domestication events in South and South-East Asia (Yunnan and surrounding areas) and India have led to the genesis of modern domestic chickens. Ha Giang province is a northern Vietnamese region, where local chickens, such as the H'mong breed, and wild junglefowl coexist. The assumption was made that hybridisation between wild junglefowl and Ha Giang chickens may have occurred and led to the high genetic diversity previously observed. The objectives of this study were i) to clarify the genetic structure of the chicken population within the Ha Giang province and ii) to give evidence of admixture with <it>G. gallus</it>. A large survey of the molecular polymorphism for 18 microsatellite markers was conducted on 1082 chickens from 30 communes of the Ha Giang province (HG chickens). This dataset was combined with a previous dataset of Asian breeds, commercial lines and samples of Red junglefowl from Thailand and Vietnam (Ha Noï). Measurements of genetic diversity were estimated both within-population and between populations, and a step-by-step Bayesian approach was performed on the global data set.</p> <p>Results</p> <p>The highest value for expected heterozygosity (> 0.60) was found in HG chickens and in the wild junglefowl populations from Thailand. HG chickens exhibited the highest allelic richness (mean A = 2.9). No significant genetic subdivisions of the chicken population within the Ha Giang province were found. As compared to other breeds, HG chickens clustered with wild populations. Furthermore, the neighbornet tree and the Bayesian clustering analysis showed that chickens from 4 communes were closely related to the wild ones and showed an admixture pattern.</p> <p>Conclusion</p> <p>In the absence of any population structuring within the province, the H'mong chicken, identified from its black phenotype, shared a common gene pool with other chickens from the Ha Giang population. The large number of alleles shared exclusively between Ha Giang chickens and junglefowl, as well as the results of a Bayesian clustering analysis, suggest that gene flow has been taking place from junglefowl to Ha Giang chickens.</p

    Design of a Bovine Low-Density SNP Array Optimized for Imputation

    Get PDF
    The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loci that are useful for determining subspecies classification and certain paternal and maternal breed lineages. The total number of SNPs was 6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip was over 97% for most dairy and beef populations. The BovineLD imputations were about 3 percentage points more accurate than those from the Illumina GoldenGate Bovine3K BeadChip across multiple populations. The improvement was greatest when neither parent was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds as was the proportion of SNPs that were polymorphic. The new BovineLD chip should facilitate low-cost genomic selection in taurine beef and dairy cattle
    corecore