1,344 research outputs found

    Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs

    Full text link
    We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables 3D human pose estimation using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall.Comment: 12 pages, Accepted at Eurographics 201

    Monte Carlo Graph Search for Quantum Circuit Optimization

    Full text link
    The building blocks of quantum algorithms and software are quantum gates, with the appropriate combination of quantum gates leading to a desired quantum circuit. Deep expert knowledge is necessary to discover effective combinations of quantum gates to achieve a desired quantum algorithm for solving a specific task. This is especially challenging for quantum machine learning and signal processing. For example, it is not trivial to design a quantum Fourier transform from scratch. This work proposes a quantum architecture search algorithm which is based on a Monte Carlo graph search and measures of importance sampling. It is applicable to the optimization of gate order, both for discrete gates, as well as gates containing continuous variables. Several numerical experiments demonstrate the applicability of the proposed method for the automatic discovery of quantum circuits.Comment: 14 pages, 9 figure

    Finding Direct-Collapse Black Holes at Birth

    Get PDF
    Direct-collapse black holes (DCBHs) are currently one of the leading contenders for the origins of the first quasars in the universe, over 300 of which have now been found at z>z > 6. But the birth of a DCBH in an atomically-cooling halo does not by itself guarantee it will become a quasar by zz \sim 7, the halo must also be located in cold accretion flows or later merge with a series of other gas-rich halos capable of fueling the BH's rapid growth. Here, we present near infrared luminosities for DCBHs born in cold accretion flows in which they are destined to grow to 109^9 M_{\odot} by zz \sim 7. Our observables, which are derived from cosmological simulations with radiation hydrodynamics with Enzo, reveal that DCBHs could be found by the James Webb Space Telescope at zz \lesssim 20 and strongly-lensed DCBHs might be found in future wide-field surveys by Euclid and the Wide-Field Infrared Space Telescope at zz \lesssim 15.Comment: 5 pages, 2 figures, accepted by ApJ

    A survey of parallel algorithms for fractal image compression

    Get PDF
    This paper presents a short survey of the key research work that has been undertaken in the application of parallel algorithms for Fractal image compression. The interest in fractal image compression techniques stems from their ability to achieve high compression ratios whilst maintaining a very high quality in the reconstructed image. The main drawback of this compression method is the very high computational cost that is associated with the encoding phase. Consequently, there has been significant interest in exploiting parallel computing architectures in order to speed up this phase, whilst still maintaining the advantageous features of the approach. This paper presents a brief introduction to fractal image compression, including the iterated function system theory upon which it is based, and then reviews the different techniques that have been, and can be, applied in order to parallelize the compression algorithm

    Fedosov supermanifolds: II. Normal coordinates

    Full text link
    The study of recently introduced Fedosov supermanifolds is continued. Using normal coordinates, properties of even and odd symplectic supermanifolds endowed with a symmetric connection respecting given sympletic structure are studied.Comment: 12 pages, Late

    Inferential evaluations of sustainability attributes: Exploring how consumers imply product information

    Get PDF
    Consumers are often confronted with incomplete product information. In such instances, they can eliminate the product from further consideration due to higher associated uncertainty or ask for more information. Alternatively, they can apply subjective theories about covariation to infer the value of missing attributes. This paper investigates the latter option in the context of sustainability and provides an in-depth exploration of consumers' inference formations. Drawing from rich qualitative data, it offers a conceptualization of the underlying relationships consumers use to infer product sustainability based on other product attributes. The study further assesses whether these findings can be captured in a quantifiable way. To this end, inferred sustainability is conceptualized as a formative second-order construct, thereby depicting the influence of inference-triggering product attributes. (authors' abstract

    A Comparison of the Morphology and Stability of Relativistic and Nonrelativistic Jets

    Get PDF
    We compare results from a relativistic and a nonrelativistic set of 2D axisymmetric jet simulations. For a set of five relativistic simulations that either increase the Lorentz factor or decrease the adiabatic index we compute nonrelativistic simulations with equal useful power or thrust. We examine these simulations for morphological and dynamical differences, focusing on the velocity field, the width of the cocoon, the age of the jets, and the internal structure of the jet itself. The primary result of these comparisons is that the velocity field of nonrelativistic jet simulations cannot be scaled up to give the spatial distribution of Lorentz factors seen in relativistic simulations. Since the local Lorentz factor plays a major role in determining the total intensity for parsec scale extragalactic jets, this suggests that a nonrelativistic simulation cannot yield the proper intensity distribution for a relativistic jet. Another general result is that each relativistic jet and its nonrelativistic equivalents have similar ages (in dynamical time units, = R/a_a, where R is the initial radius of a cylindrical jet and a_a is the sound speed in the ambient medium). In addition to these comparisons, we have completed four new relativistic simulations to investigate the effect of varying thermal pressure on relativistic jets. The simulations generally confirm that faster (larger Lorentz factor) and colder jets are more stable, with smaller amplitude and longer wavelength internal variations. The apparent stability of these jets does not follow from linear normal mode analysis, which suggests that there are available growing Kelvin-Helmholtz modes. (Abridged.)Comment: 32 pages, AASTEX, to appear in May 10, 1999 issue of ApJ, better versions of Figures 1 and 6 are available at http://crux.astr.ua.edu/~rosen/rel/rhdh.htm
    corecore