90 research outputs found

    CLOUD REMOVAL FROM SENTINEL-2 IMAGE TIME SERIES THROUGH SPARSE RECONSTRUCTION FROM RANDOM SAMPLES

    Get PDF
    In this paper we propose a cloud removal algorithm for scenes within a Sentinel-2 satellite image time series based on synthetisation of the affected areas via sparse reconstruction. For this purpose, a clouds and clouds shadow mask must be given. With respect to previous works, the process has an increased automation degree. Several dictionaries, on the basis of which the data are reconstructed, are selected randomly from cloud-free areas around the cloud, and for each pixel the dictionary yielding the smallest reconstruction error in non-corrupted images is chosen for the restoration. The values below a cloudy area are therefore estimated by observing the spectral evolution in time of the non-corrupted pixels around it. The proposed restoration algorithm is fast and efficient, requires minimal supervision and yield results with low overall radiometric and spectral distortions

    SPECTRAL MATCHING THROUGH DATA COMPRESSION

    No full text
    This paper proposes to use compression-based similarity measures to cluster spectral signatures on the basis of their similarities. Such universal distances estimate the shared information between two objects by comparing their compression factors, which can be obtained by any standard compressor. Experiments on spectra, both collected in the field and selected from a hyperspectral scene, show that these methods may outperform traditional choices for spectral distances based on vector processing such as Spectral Angle, Spectral Information Divergence, Spectral Correlation, and Euclidean Distance

    HYPERSPECTRAL IMAGE RESOLUTION ENHANCEMENT BASED ON SPECTRAL UNMIXING AND INFORMATION FUSION

    No full text
    Hyperspectral imaging sensors exibit high spectral resolution, but normally low spatial resolution. This leads to spectral signatures of pixels originating from different object types. Such pixels are called mixed pixels. Spectral unmixing methods can be employed to estimate the fractions of reflected light from the different objects within the pixel area. However, spectral unmixing does not provide any spatial information about the sources and therefore additional information is needed to precisely locate the sources. In order to restore the spatial information of hyperspectral images we propose a hyperspectral and multispectral image fusion method based on spectral unmixing. The algorithm is tested with HyMAP image data consisting of 125 spectral bands and a simulated multispectral image consisting of 8 bands
    • …
    corecore