451 research outputs found

    Asteroseismology and calibration of alpha Cen binary system

    Full text link
    Using the oscillation frequencies of alpha Cen A recently discovered by Bouchy & Carrier, the available astrometric, photometric and spectroscopic data, we tried to improve the calibration of the visual binary system alpha Cen. With the revisited masses of Pourbaix et al. (2002) we do not succeed to obtain a solution satisfying all the seismic observational constraints. Relaxing the constraints on the masses, we have found an age t_alpha Cen=4850+-500 Myr, an initial helium mass fraction Y_i = 0.300+-0.008, and an initial metallicity (Z/X)_i=0.0459+-0.0019, with M_A=1.100+-0.006M_o and M_B=0.907+-0.006M_o for alpha Cen A&B.Comment: accepted for publication as a letter in A&

    Inferring the equatorial solar tachocline from frequency splittings

    Get PDF
    Helioseismic inversions, carried out for several years on various ground-based and spatial observations, have shown that the solar rotation rate presents two principal regimes: a quasi-rigid rotation in the radiative interior and a latitude-dependent rotation in the whole convection zone. The thin layer, named solar tachocline, between these two regimes is difficult to infer through inverse techniques because of the ill-posed nature of the problem that requires regularization techniques which, in their global form, tend to smooth out any high gradient in the solution. Thus, most of the previous attempts to study the rotation profile of the solar tachocline have been carried out through forward modeling. In this work we show that some appropriate inverse techniques can also be used and we compare the ability of three 1D inverse techniques combined with two automatic strategies for the choice of the regularization parameter, to infer the solar tachocline profile in the equatorial plane. Our work, applied on LOWL (LOWL is an abbreviation for low degree denoted by L) two years dataset, argue in favor of a very sharp (0.05+/-0.03R_sun) transition zone located at 0.695+/-0.005R_sun which is in good agreement with the previous forward analysis carried out on Global Oscillations Network Group (GONG), Big Bear Solar Observatory (BBSO) and LOWL datasets
    • …
    corecore