405 research outputs found

    The non-Newtonian rheology of dilute colloidal suspensions

    Get PDF
    The non-Newtonian rheology is calculated numerically to second order in the volume fraction in steady simple shear flows for Brownian hard spheres in the presence of hydrodynamic and excluded volume interactions. Previous analytical and numerical results for the low-shear structure and rheology are confirmed, demonstrating that the viscosity shear thins proportional to Pe2, where Pe is the dimensionless shear rate or PĂ©clet number, owing to the decreasing contribution of Brownian forces to the viscosity. In the large Pe limit, remnants of Brownian diffusion balance convection in a boundary-layer in the compressive region of the flow. In consequence, the viscosity shear thickens when this boundary-layer coincides with the near-contact lubrication regime of the hydrodynamic interaction. Wakes are formed at large Pe in the extensional zone downstream from the reference particle, leading to broken symmetry in the pair correlation function. As a result of this asymmetry and that in the boundary-layer, finite normal stress differences are obtained as well as positive departures in the generalized osmotic pressure from its equilibrium value. The first normal stress difference changes from positive to negative values as Pe is increased when the hard-sphere limit is approached. This unusual effect is caused by the hydrodynamic lubrication forces that maintain particles in close proximity well into the extensional quadrant of the flow. The study demonstrates that many of the non-Newtonian effects observed in concentrated suspensions by experiments and by Stokesian dynamics simulations are present also in dilute suspensions

    Aggregates relaxation in a jamming colloidal suspension after shear cessation

    Full text link
    The reversible aggregates formation in a shear thickening, concentrated colloidal suspension is investigated through speckle visibility spectroscopy, a dynamic light scattering technique recently introduced [P.K. Dixon and D.J. Durian, Phys. Rev. Lett. 90, 184302 (2003)]. Formation of particles aggregates is observed in the jamming regime, and their relaxation after shear cessation is monitored as a function of the applied shear stress. The aggregates relaxation time increases when a larger stress is applied. Several phenomena have been proposed to interpret this behavior: an increase of the aggregates size and volume fraction, or a closer packing of the particles in the aggregates.Comment: 7 pages, 7 figures; added figures included in the pdf versio

    Colloidal gelation and non-ergodicity transitions

    Full text link
    Within the framework of the mode coupling theory (MCT) of structural relaxation, mechanisms and properties of non-ergodicity transitions in rather dilute suspensions of colloidal particles characterized by strong short-ranged attractions are studied. Results building on the virial expansion for particles with hard cores and interacting via an attractive square well potential are presented, and their relevance to colloidal gelation is discussed.Comment: 10 pages, 4 figures; Talk at the Conference: "Unifying Concepts in Glass Physics" ICTP Trieste, September 1999; to be published in J. Phys.: Condens. Matte

    Protein synthesis in vitro , in the presence of Ca(OH) 2 -containing pulp-capping medicaments

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73494/1/j.1600-0714.1983.tb00348.x.pd

    Bacterial leakage around dental restorations: its effect on the dental pulp

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72129/1/j.1600-0714.1982.tb00188.x.pd

    Glasses in hard spheres with short-range attraction

    Full text link
    We report a detailed experimental study of the structure and dynamics of glassy states in hard spheres with short-range attraction. The system is a suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear polymer which induces a depletion attraction between the particles. Observation of crystallization reveals a re-entrant glass transition. Static light scattering shows a continuous change in the static structure factors upon increasing attraction. Dynamic light scattering results, which cover 11 orders of magnitude in time, are consistent with the existence of two distinct kinds of glasses, those dominated by inter-particle repulsion and caging, and those dominated by attraction. Samples close to the `A3 point' predicted by mode coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure

    The effect of antifibrinolytic agents on the healing of modified Widman flaps in monkeys

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65632/1/j.1600-0765.1984.tb00810.x.pd

    Dynamic heterogeneities in attractive colloids

    Full text link
    We study the formation of a colloidal gel by means of Molecular Dynamics simulations of a model for colloidal suspensions. A slowing down with gel-like features is observed at low temperatures and low volume fractions, due to the formation of persistent structures. We show that at low volume fraction the dynamic susceptibility, which describes dynamic heterogeneities, exhibits a large plateau, dominated by clusters of long living bonds. At higher volume fraction, where the effect of the crowding of the particles starts to be present, it crosses over towards a regime characterized by a peak. We introduce a suitable mean cluster size of clusters of monomers connected by "persistent" bonds which well describes the dynamic susceptibility.Comment: 4 pages, 4 figure

    Hierarchy of piecewise non-linear maps with non-ergodicity behavior

    Full text link
    We study the dynamics of hierarchy of piecewise maps generated by one-parameter families of trigonometric chaotic maps and one-parameter families of elliptic chaotic maps of cn\mathbf{cn} and sn\mathbf{sn} types, in detail. We calculate the Lyapunov exponent and Kolmogorov-Sinai entropy of the these maps with respect to control parameter. Non-ergodicity of these piecewise maps is proven analytically and investigated numerically . The invariant measure of these maps which are not equal to one or zero, appears to be characteristic of non-ergodicity behavior. A quantity of interest is the Kolmogorov-Sinai entropy, where for these maps are smaller than the sum of positive Lyapunov exponents and it confirms the non-ergodicity of the maps.Comment: 18 pages, 8 figure
    • …
    corecore