28 research outputs found

    Paradoxical Association of C-Reactive Protein with Endothelial Function in Rheumatoid Arthritis

    Get PDF
    Background: Within the general population, levels of C-reactive protein (CRP) are positively associated with atherosclerotic cardiovascular disease (CVD). Whether CRP is causally implicated in atherogenesis or is the results of atherosclerosis is disputed. A role of CRP to protect endothelium-derived nitric oxide (EDNO) has been suggested. We examined the association of CRP with EDNO-dependent vasomotor function and subclinical measures of atherosclerosis and arteriosclerosis in patients with raised CRP resulting from rheumatoid arthritis (RA).Methodology/Principal Findings: Patients with RA (n = 59) and healthy control subjects (n = 123), underwent measures of high sensitivity CRP, flow-mediated dilation (FMD, dependent on EDNO), intima-media thickness (IMT, a measure of subclinical atherosclerosis) and aortic pulse wave velocity (PWV, a measure of arteriosclerosis). IMT and PWV were elevated in patients with RA compared to controls but FMD was similar in the two groups. In patients with RA, IMT and PWV were not correlated with CRP but FMD was positively independently correlated with CRP (P<0.01).Conclusions/Significance: These findings argue against a causal role of CRP in atherogenesis and are consistent with a protective effect of CRP on EDNO bioavailability

    Blood Pressure in Healthy Humans is Regulated by Neuronal NO Synthase

    Get PDF
    NO is physiologically generated by endothelial and neuronal NO synthase (nNOS) isoforms. Although nNOS was first identified in brain, it is expressed in other tissues, including perivascular nerves, cardiac and skeletal muscle. Increasing experimental evidence suggests that nNOS has important effects on cardiovascular function, but its composite effects on systemic hemodynamics in humans are unknown. We undertook the first human study to assess the physiological effects of systemic nNOS inhibition on basal hemodynamics. Seventeen healthy normotensive men aged 24±4 years received acute intravenous infusions of an nNOS-selective inhibitor, S-methyl-l-thiocitrulline, and placebo on separate occasions. An initial dose-escalation study showed that S-methyl-l-thiocitrulline (0.1–3.0 µmol/kg) induced dose-dependent changes in systemic hemodynamics. The highest dose of S-methyl-l-thiocitrulline (3.0 µmol/kg over 10 minutes) significantly increased systemic vascular resistance (+42±6%) and diastolic blood pressure (67±1 to 77±3 mm Hg) when compared with placebo (both P<0.01). There were significant decreases in heart rate (60±4 to 51±3 bpm; P<0.01) and left ventricular stroke volume (59±6 to 51±6 mL; P<0.01) but ejection fraction was unaltered. S-methyl-l-thiocitrulline had no effect on radial artery flow-mediated dilatation, an index of endothelial NOS activity. These results suggest that nNOS-derived NO has an important role in the physiological regulation of basal systemic vascular resistance and blood pressure in healthy humans

    Relation of arterial stiffness to left ventricular structure and function in healthy women

    No full text
    Abstract Background Interactions between the left ventricular (LV) and the arterial system, (ventricular-arterial coupling) are key determinants of cardiovascular function. However, most of studies covered multiple cardiovascular risk factors, which also contributed to the morphological and functional changes of LV. The aim of this study was to examine the relationship between arterial stiffness and LV structure and function in healthy women with a low burden of risk factors. Methods Healthy women from the Twins UK cohort (n = 147, mean age was 54.07 ± 11.90 years) were studied. Arterial stiffness was evaluated by carotid-femoral pulse wave velocity (cf-PWV). LV structure and function were assessed by two-dimensional speckle tracking echocardiography. Results cf-PWV was significantly associated with most measures of LV geometry and function, including relative wall thickness (RWT), E/e’ ratio, global circumferential and radial strain, apical rotation and LV twist (each p <  0.05), but bore no relation to global longitudinal strain. After adjustment for age, body mass index, blood pressure and heart rate, cf-PWV was significantly correlated with RWT, global circumferential strain, apical rotation and LV twist (β = 0.011, − 0.484, 1.167 and 1.089, respectively, each p ≤  0.05). Conclusions In healthy women with a low burden of risk factors, elevated arterial stiffness was intimately interwoven with increased LV twisting even before LV dysfunction becomes clinically evident

    Association of Cross-Sectional and Longitudinal Change in Arterial Stiffness With Gene Expression in the Twins UK Cohort

    No full text
    We investigated whether expression of genes previously implicated in arterial stiffening associates with cross-sectional and longitudinal measures of arterial stiffness. Women from the Twins UK cohort (n=470, aged 39–81 years) had gene expression in lymphoblastoid cell lines measured using an Illumina microarray. Arterial stiffness was measured by carotid-femoral pulse wave velocity and carotid distensibility. A subsample (n=121) of women had repeat vascular measures after a mean±SD follow-up of 4.3±1.4 years. Associations of arterial phenotypes with gene expression levels were examined for 52 genes identified from previous association studies. The gene transcript most closely associated with pulse wave velocity in cross-sectional analysis was ectonucleotide pyrophosphatase/phosphodiesterase ( P =0.012). Pleiotropic genetic effects accounted for 14% of the phenotypic correlation between ectonucleotide pyrophosphatase/phosphodiesterase expression and pulse wave velocity. Progression of pulse wave velocity during the follow-up period best related to expression of ectonucleotide pyrophosphatase/phosphodiesterase (β=0.19, P =0.008) and collagen type IV α 1 (β=0.32, P &lt;0.0001). Gene transcripts most closely related to change in carotid distensibility during the follow-up period were endothelial nitric oxide synthase (β=–0.20, P =0.005), angiotensin-converting enzyme (β=–0.15, P =0.035), and B-cell CLL/lymphoma11B (β=0.18, P =0.010). Expression levels of angiotensin-converting enzyme also related to progression in carotid diameter (β=0.21, P =0.012). Expression levels of ectonucleotide pyrophosphatase/phosphodiesterase, involved in arterial calcification, and collagen type IV α 1, involved in collagen formation, correlate with aortic stiffening. These genes may be functional mediators of arterial stiffening. </jats:p

    Arterial Stiffening Relates to Arterial Calcification But Not to Noncalcified Atheroma in Women:A Twin Study

    Get PDF
    ObjectivesOur aim was to examine the relationship of arterial stiffness to measures of atherosclerosis, arterial calcification, and bone mineral density (BMD); the heritability of these measures; and the degree to which they are explained by common genetic influences.BackgroundArterial stiffening relates to arterial calcification, but this association could result from coexistent atherosclerosis. A reciprocal relationship between arterial stiffening/calcification and BMD could explain the association between cardiovascular morbidity and osteoporosis.MethodsWe examined, in 900 women from the Twins UK cohort, the relationship of carotid-femoral pulse wave velocity (cfPWV) to measures of atherosclerosis (carotid intima-media thickening; carotid/femoral plaque), calcification (calcified plaque [CP]; aortic calcification by computed tomography, performed in subsample of 40 age-matched women with low and high cfPWV), and BMD.ResultsThe cfPWV independently correlated with CP but not with intima-media thickness or noncalcified plaque. Total aortic calcium, determined by computed tomography, was significantly greater in subjects with high cfPWV (median Agatston score 450.4 compared with 63.2 arbitrary units in subjects with low cfPWV, p = 0.001). There was no independent association between cfPWV and BMD. Adjusted heritability estimates of cfPWV and CP were 0.38 (95% confidence interval: 0.19 to 0.59) and 0.61 (95% confidence interval: 0.04 to 0.83), respectively. Shared genetic factors accounted for 92% of the observed correlation (0.38) between cfPWV and CP.ConclusionsThese results suggest that the association between increased arterial stiffness and the propensity of the arterial wall to calcify is explained by a common genetic etiology and is independent of noncalcified atheromatous plaque and independent of BMD
    corecore