174 research outputs found
The Weddell Gyre, Southern Ocean: present knowledge and future challenges
The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide and global modeling efforts – thereby enhancing predictions of the WG in global ocean circulation and climate
Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment
δ13C of nematode communities in 27 sites was analyzed, spanning a large depth range (from 130 to 2,021 m) in five Antarctic regions, and compared to isotopic signatures of sediment organic matter. Sediment organic matter δ13C ranged from −24.4 to −21.9‰ without significant differences between regions, substrate types or depths. Nematode δ13C showed a larger range, from −34.6 to −19.3‰, and was more depleted than sediment organic matter typically by 1‰ and by up to 3‰ in silty substrata. These, and the isotopically heavy meiofauna at some stations, suggest substantial selectivity of some meiofauna for specific components of the sedimenting plankton. However, 13C-depletion in lipids and a potential contribution of chemoautotrophic carbon in the diet of the abundant genus Sabatieria may confound this interpretation. Carbon sources for Antarctic nematodes were also explored by means of an experiment in which the fate of a fresh pulse of labile carbon to the benthos was followed. This organic carbon was remineralized at a rate (11–20 mg C m−2 day−1) comparable to mineralization rates in continental slope sediments. There was no lag between sedimentation and mineralization; uptake by nematodes, however, did show such a lag. Nematodes contributed negligibly to benthic carbon mineralization
The SOLAS air-sea gas exchange experiment (SAGE) 2004
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating
gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in
high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the
expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and
summary of the main experimental findings. The release site was selected from a pre-voyage desktop
study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the
south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In
common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a
Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange
processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton
bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled
volume (patch) of ocean and the air-sea tracer exchange at the 10’s of km’s scale, in conjunction with
the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the
gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments.
There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton
within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary
production and column-integrated chlorophyll a concentrations had only doubled relative to the
unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions
totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron
enrichment experiments. An investigation of the factors limiting bloom development considered co-
limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst
incident light levels and the initial Si:N ratio were the lowest recorded in all FeAX’s to date, there was
only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition
was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton
growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing
were all considered as factors that prevented significant biomass accumulation. In line with the limited
response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.SAGE was jointly funded through
the New Zealand Foundation for Research, Science and Technology (FRST) programs
(C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean
Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for
specific collaborations by the US National Science Foundation from grants OCE-0326814
(Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural
Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand
International Science and Technology (ISAT) linkages fund provided additional funding
(Archer and Ziolkowski), and the many collaborator institutions also provided valuable
support
The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat
The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0–2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m−2 in summer and autumn, and 2.7 individuals m−2 in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0–2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0–2 m layer were higher than corresponding values from the 0–200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0–200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change
A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS)
The Joint Global Ocean Flux Study (JGOFS) has completed a decade of intensive process and time-series studies on the regional and temporal dynamics of biogeochemical processes in five diverse ocean basins. Its field program also included a global survey of dissolved inorganic carbon (DIC) in the ocean, including estimates of the exchange of carbon dioxide (CO2) between the ocean and the atmosphere, in cooperation with the World Ocean Circulation Experiment (WOCE).
This report describes the principal achievements of JGOFS in ocean observations, technology development and modelling. The study has produced a comprehensive and high-quality database of measurements of ocean biogeochemical properties. Data on temporal and spatial changes in primary production and CO2 exchange, the dynamics of of marine food webs, and the availability of micronutrients have yielded new insights into what governs ocean productivity, carbon cycling and export into the deep ocean, the set of processes collectively known as the "biological pump."
With large-scale, high-quality data sets for the partial pressure of CO2 in surface waters as well for other DIC parameters in the ocean and trace gases in the atmosphere, reliable estimates, maps and simulations of air-sea gas flux, anthropogenic carbon and inorganic carbon export are now available. JGOFS scientists have also obtained new insights into the export flux of particulate and dissolved organic carbon (POC and DOG), the variations that occur in the ratio of elements in organic matter, and the utilization and remineralization of organic matter as it falls through the ocean interior to the sediments.
JGOFS scientists have amassed long-term data on temporal variability in the exchange of CO2 between the ocean and atmosphere, ecosystem dynamics, and carbon export in the oligotrophic subtropical gyres. They have documented strong links between these variables and large-scale climate patterns such as the El Nino-Southern Oscillation (ENSO) or the North Atlantic Oscillation (NAO). An increase in the abundance of organisms that fix free nitrogen (N-2) and a shift in nutrient limitation from nitrogen to phosphorus in the subtropical North Pacific provide evidence of the effects of a decade of strong El Ninos on ecosystem structure and nutrient dynamics.
High-quality data sets, including ocean-color observations from satellites, have helped modellers make great strides in their ability to simulate the biogeochemical and physical constraints on the ocean carbon cycle and to extend their results from the local to the regional and global scales. Ocean carbon-cycle models, when coupled to atmospheric and terrestrial models, will make it possible in the future to predict ways in which land and ocean ecosystems might respond to changes in climate
- …