3,255 research outputs found
Psychological type preferences of Christian groups : comparison with the UK population norms
A sample of 246 male and 380 female participants in courses about psychological type theory in a Christian context completed Form G (Anglicised) of the Myers-Briggs Personality Type Indicator® (MBTI®) instrument. The male Christians demonstrated clear preferences for Introversion, Sensing, Thinking, and Judging. The female Christians demonstrated clear preferences for Introversion, Sensing, Feeling, and Judging. The predominant type among the men was ISTJ (18%) and the predominant type among the women was ISFJ (21%). The type preferences of the current samples were statistically compared with the United Kingdom population norms. The male Christians preferred Intuition and Judging significantly more frequently than the male UK population norms, and the female Christians preferred Introversion, Intuition, and Judging significantly more frequently than the female UK population norms
ESTIMATING RETURNS FROM PAST INVESTMENTS INTO BEEF CATTLE GENETICS RD&E IN AUSTRALIA
This study aimed at estimating the costs and benefits of all beef cattle genetic improvement activity, across Australia, over the period 1970 to the present. The total cumulative Present Value (PV) of investments by industry, government and other agencies into selection, crossbreeding and grading up since 1963, and of imported genetics, was estimated to be 2001 at a 7% discount rate). Using a suite of genetic evaluation models, farming systems models and an industry-level model, the cumulative PV of industry returns were estimated. Within-breed selection generated 255m; changing breed composition in southern Australia 8.1bn. The benefit/cost ratio for this investment was 28:1 over the last 30 years.Livestock Production/Industries, Research and Development/Tech Change/Emerging Technologies,
Cosmic-Ray Positrons: Are There Primary Sources?
Cosmic rays at the Earth include a secondary component originating in
collisions of primary particles with the diffuse interstellar gas. The
secondary cosmic rays are relatively rare but carry important information on
the Galactic propagation of the primary particles. The secondary component
includes a small fraction of antimatter particles, positrons and antiprotons.
In addition, positrons and antiprotons may also come from unusual sources and
possibly provide insight into new physics. For instance, the annihilation of
heavy supersymmetric dark matter particles within the Galactic halo could lead
to positrons or antiprotons with distinctive energy signatures. With the
High-Energy Antimatter Telescope (HEAT) balloon-borne instrument, we have
measured the abundances of positrons and electrons at energies between 1 and 50
GeV. The data suggest that indeed a small additional antimatter component may
be present that cannot be explained by a purely secondary production mechanism.
Here we describe the signature of the effect and discuss its possible origin.Comment: 15 pages, Latex, epsfig and aasms4 macros required, to appear in
Astroparticle Physics (1999
Estimating the Returns from Past Investment into Beef Cattle Genetic Technologies in Australia
Research and Development/Tech Change/Emerging Technologies,
From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields
Light-electron interaction in empty space is the seminal ingredient for
free-electron lasers and also for controlling electron beams to dynamically
investigate materials and molecules. Pushing the coherent control of free
electrons by light to unexplored timescales, below the attosecond, would enable
unprecedented applications in light-assisted electron quantum circuits and
diagnostics at extremely small timescales, such as those governing
intramolecular electronic motion and nuclear phenomena. We experimentally
demonstrate attosecond coherent manipulation of the electron wave function in a
transmission electron microscope, and show that it can be pushed down to the
zeptosecond regime with existing technology. We make a relativistic pulsed
electron beam interact in free space with an appropriately synthesized
semi-infinite light field generated by two femtosecond laser pulses reflected
at the surface of a mirror and delayed by fractions of the optical cycle. The
amplitude and phase of the resulting coherent oscillations of the electron
states in energymomentum space are mapped via momentum-resolved ultrafast
electron energy-loss spectroscopy. The experimental results are in full
agreement with our theoretical framework for light-electron interaction, which
predicts access to the zeptosecond timescale by combining semi-infinite X-ray
fields with free electrons.Comment: 22 pages, 6 figure
Shaping, imaging and controlling plasmonic interference fields at buried interfaces
Filming and controlling plasmons at buried interfaces with nanometer (nm) and
femtosecond (fs) resolution has yet to be achieved and is critical for next
generation plasmonic/electronic devices. In this work, we use light to excite
and shape a plasmonic interference pattern at a buried metal-dielectric
interface in a nanostructured thin film. Plasmons are launched from a
photoexcited array of nanocavities and their propagation is filmed via
photon-induced near-field electron microscopy (PINEM). The resulting movie
directly captures the plasmon dynamics, allowing quantification of their group
velocity at approximately 0.3c, consistent with our theoretical predictions.
Furthermore, we show that the light polarization and nanocavity design can be
tailored to shape transient plasmonic gratings at the nanoscale. These results,
demonstrating dynamical imaging with PINEM, pave the way for the fs/nm
visualization and control of plasmonic fields in advanced heterostructures
based on novel 2D materials such as graphene, MoS, and ultrathin metal
films.Comment: 16 pages, 5 figures, 3 supplementary figure
Flux-free conductance modulation in a helical Aharonov-Bohm interferometer
A novel conductance oscillation in a twisted quantum ring composed of a
helical atomic configuration is theoretically predicted. Internal torsion of
the ring is found to cause a quantum phase shift in the wavefunction that
describes the electron's motion along the ring. The resulting conductance
oscillation is free from magnetic flux penetrating inside the ring, which is in
complete contrast with the ordinary Aharonov-Bohm effect observed in untwisted
quantum rings.Comment: 10 pages, 4 figure
Design of an electron microscope phase plate using a focused continuous-wave laser
We propose a Zernike phase contrast electron microscope that uses an intense
laser focus to convert a phase image into a visible image. We present the
relativistic quantum theory of the phase shift caused by the
laser-electron-interaction, study resonant cavities for enhancing the laser
intensity, and discuss applications in biology, soft materials science, and
atomic and molecular physics.Comment: 5 pages, 3 figure
- …
