24,426 research outputs found
Black hole masses in active galaxies
This contribution reviews two topics of current interest in the study of black hole
demographics in active galaxies: Can the stellar velocity dispersions of quasar host galaxies be
measured? And can we constrain the black hole mass function below 10^6 M_⊙
Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations
One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology
Ground- and surface water mass balances to ensure protection of St Lawrence River ecostystems
No abstract available
Some notes on shock resolving flux functions. Part 1: Stationary characteristics
Numerical flux functions for solving the Euler equations using exact and/or approximate solutions of the Riemann problem of gasdynamics are discussed. Under certain restrictive conditions, schemes using these flux functions produce systems of equations which can exhibit a single degree of freedom. In some instances, the solutions represented by this degree of freedom are unstable to perturbations. This local instability can seriously degrade the temporal convergence of numerical schemes. This point is demonstrated by numerical example
The Lick AGN Monitoring Project 2011: Reverberation Mapping of Markarian 50
The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in spring 2011. Here we present the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50. Combining our data with supplemental observations obtained prior to the start of the main observing campaign, our data set covers a total duration of 4.5 months. During this time, Mrk 50 was highly variable, exhibiting a maximum variability amplitude of a factor of ~4 in the U-band continuum and a factor of ~2 in the Hβ line. Using standard cross-correlation techniques, we find that Hβ and Hγ lag the V-band continuum by τ_(cen) = 10.64^(+0.82)_(–0.93) and 8.43^(+1.30)_(–1.28) days, respectively, while the lag of He II λ4686 is unresolved. The Hβ line exhibits a symmetric velocity-resolved reverberation signature with shorter lags in the high-velocity wings than in the line core, consistent with an origin in a broad-line region (BLR) dominated by orbital motion rather than infall or outflow. Assuming a virial normalization factor of f = 5.25, the virial estimate of the black hole mass is (3.2 ± 0.5) × 10^7 M_☉. These observations demonstrate that Mrk 50 is among the most promising nearby active galaxies for detailed investigations of BLR structure and dynamics
No Evidence for [O III] Variability in Mrk 142
Using archival data from the 2008 Lick AGN Monitoring Project, Zhang & Feng
(2016) claimed to find evidence for flux variations in the narrow [O III]
emission of the Seyfert 1 galaxy Mrk 142 over a two-month time span. If
correct, this would imply a surprisingly compact size for the narrow-line
region. We show that the claimed [O III] variations are merely the result of
random errors in the overall flux calibration of the spectra. The data do not
provide any support for the hypothesis that the [O III] flux was variable
during the 2008 monitoring period.Comment: Response to Zhang & Feng 2016, MNRAS Letters, 457, L64
(arXiv:1512.07673). Accepted for publication in MNRAS Letters. 5 pages, 2
figure
An efficient approximate factorization implicit scheme for the equations of gasdynamics
An efficient implicit finite-difference algorithm for the gas dynamic equations utilizing matrix reduction techniques is presented. A significant reduction in arithmetic operations is achieved while maintaining the same favorable stability characteristics and generality found in the Beam and Warming approximate factorization algorithm. Steady-state solutions to the conservative Euler equations in generalized coordinates are obtained for transonic flows about a NACA 0012 airfoil. The theoretical extension of the matrix reduction technique to the full Navier-Stokes equations in Cartesian coordinates is presented in detail. Linear stability, using a Fourier stability analysis, is demonstrated and discussed for the one-dimensional Euler equations. It is shown that the method offers advantages over the conventional Beam and Warming scheme and can retrofit existing Beam and Warming codes with minimal effort
The MacLane class and the Eremenko-Lyubich class
In 1970 G. R. MacLane asked if it is possible for a locally univalent function in the class A to have an arc tract. This question remains open, but several results about it have been given. We significantly strengthen these results, in particular replacing the condition of local univalence by the more general condition that the set of critical values is bounded. Also, we adapt a recent powerful technique of C. J. Bishop in order to show that there is a function in the Eremenko-Lyubich class for the disc that is not in the class A
- …