322 research outputs found

    Interfacial Studies in Semiconductor Heterostructures by X-Ray Diffraction Techniques

    Get PDF
    X-ray radiation is a non-destructive probe well suited to assess structural perfection of semiconductor material. Three techniques are used to study the interfacial roughness, period fluctuations and annealing-induced interdiffusion in various superlattice structures. Reflectivity of long period Si/Si1-xGex multiple quantum wells reveals an asymmetry oriented along the direction of miscut in the interface roughness with the Si1-xGex to Si interfaces being about twice as rough (0.5 versus 0.3 nm) as the Si to Si1-xGex interfaces. For Si-Si0.65Ge0.35 multiple quantum wells, diffuse scattering is minimal for a growth temperature of 550°C and increases substantially at very low (250°C) or high (750°C) growth temperatures. In (SimGen)p short period superlattices, the X-ray reflectivity data are consistent with interfacial mixing over about two monolayers and thickness fluctuations of about 5% vertically in the structures. For superlattices grown on vicinal surfaces, the roughness spectrum is correlated with the surface miscut orientation. Double-crystal X-ray diffraction using symmetrical and asymmetrical reflections has been used to study epitaxial lattice distortion and strain relaxation in InGaAs/GaAs heterostructures grown on (100) on-orientation and 2° off (100) GaAs surfaces. It is shown that thick InGaAs films retain an appreciable fraction of their initial strain and that their crystal lattice is triclinically distorted. The magnitude of the deformation is larger when growth is carried out on a vicinal surface

    Surface Stress, Morphological Development, and Dislocation Nucleation During SixGe1-x Epitaxy

    Get PDF
    Utilizing Ge marker layer experiments combined with atomic number contrast (Z-contrast) imaging, we have studied the evolving surface morphology of SixGe1-x alloys during growth by molecular beam epitaxy. The marker layers map out the instability transition between planar two-dimensional (2D) growth and three-dimensional (3D) growth. The transition occurs via the gradual formation of a surface ripple as anticipated from instability theory. However, these undulations rapidly develop into crack-like surface instabilities which we simulate and explain by the mechanism of stress-driven surface diffusion. Finally, we model the large stresses associated with these features within a fracture mechanics formalism. This analysis demonstrates that crack-like instabilities provide ideal candidate sites for the nucleation of misfit dislocations

    X-Ray Absorption Studies of Strain in Epitaxial (Si-Ge) Atomic Layer Superlattice and Alloy Films

    Get PDF
    The Si 1s (K-shell) X-ray absorption spectra of a series of strained SixGe100-x alloy thin films and several {(Si)m(Ge)n}p atomic layer superlattices (ALS) grown epitaxially on Si(100) and Ge(100) substrates have been investigated using plane polarized synchrotron radiation. Polarization dependent components of the signal are attributed to anisotropic states associated with strain-induced tetragonal distortions. The sense of the polarization is shown to be identical for all compositions (x = 25 to 92) of SiGe alloys grown on Si(100) substrates. The opposite polarization dependence is found to occur for all SixGe100-x alloys (x = 12 to 50) grown on Ge(100) substrates. The polarization dependence and shape of the near edge spectral features of alloy and ALS samples which have similar (average) chemical composition are remarkably similar. A preliminary comparison of the alloy results with literature band structure calculations is made

    Influence of Annealing on the Interface Structure and Strain Relief in Si/Ge Heterostructures on (100) Si

    Get PDF
    Research work on the general problem of the nature and thermal stability of the Si/Ge semiconductor interface is reviewed. We report on our recent studies of the interface structure in [(Si)m(Ge)n]p superlattices and (Ge)n layers buried in Si as revealed by Raman scattering, extended X-ray absorption fine structure, and X-ray techniques. Strain relaxation and interdiffusion in the superlattices caused by annealing have been investigated, and it is found that considerable strain-enhanced intermixing together with partial relaxation of Ge-Ge bonds occurs even for very short anneal times at 700°C. Further annealing leads to diffusion at a much slower rate and to the eventual formation of an alloy layer. The Ge-Ge bond lengths in as-grown samples are that expected for a fully strained Ge layer. Similar studies of the (Ge)n layers reveal that two-dimensional pseudomorphic growth proceeds up to n = 5, probably mediated by a Si-Ge interface interdiffusion over one or two monolayers of approximately 20%. A n = 12 layer gave evidence of strain relaxation by the introduction of dislocations and clustering. Interdiffusion proceeds rapidly on annealing at 750°C

    Structural neuroimaging correlates of social deficits are similar in autism spectrum disorder and attention-deficit/hyperactivity disorder: analysis from the POND Network

    Get PDF
    Autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD) have been associated with difficulties recognizing and responding to social cues. Neuroimaging studies have begun to map the social brain; however, the specific neural substrates contributing to social deficits in neurodevelopmental disorders remain unclear. Three hundred and twelve children underwent structural magnetic resonance imaging of the brain (controls = 32, OCD = 44, ADHD = 77, ASD = 159; mean age = 11). Their social deficits were quantified on the Social Communication Questionnaire (SCQ) and the Reading the Mind in the Eyes Test (RMET). Multivariable regression models were used to examine the structural neuroimaging correlates of social deficits, with both a region of interest and a whole-brain vertex-wise approach. For the region of interest analysis, social brain regions were grouped into three networks: (1) lateral mentalization (e.g., temporal–parietal junction), (2) frontal cognitive (e.g., orbitofrontal cortex), and (3) subcortical affective (e.g., limbic system) regions. Overall, social communication deficits on the SCQ were associated with thinner cortices in the left lateral regions and the right insula, and decreased volume in the ventral striatum, across diagnostic groups (p = 0.006 to \u3c0.0001). Smaller subcortical volumes were associated with more severe social deficits on the SCQ in ASD and ADHD, and less severe deficits in OCD. On the RMET, larger amygdala/hippocampal volumes were associated with fewer deficits across groups. Overall, patterns of associations were similar in ASD and ADHD, supporting a common underlying biology and the blurring of the diagnostic boundaries between these disorders

    Oxytocin Receptor Polymorphisms are Differentially Associated with Social Abilities across Neurodevelopmental Disorders

    Get PDF
    Oxytocin is a pituitary neuropeptide that affects social behaviour. Single nucleotide polymorphisms (SNPs) in the oxytocin receptor gene (OXTR) have been shown to explain some variability in social abilities in control populations. Whether these variants similarly contribute to the severity of social deficits experienced by children with neurodevelopmental disorders is unclear. Social abilities were assessed in a group of children with autism spectrum disorder (ASD, n = 341) or attention deficit hyperactivity disorder (ADHD, n = 276) using two established social measures. Scores were compared by OXTR genotype (rs53576, rs237887, rs13316193, rs2254298). Unexpectedly, the two most frequently studied OXTR SNPs in the general population (rs53576 and rs2254298) were associated with an increased severity of social deficits in ASD (p \u3c 0.0001 and p = 0.0005), yet fewer social deficits in ADHD (p = 0.007 and p \u3c 0.0001). We conclude that these genetic modifier alleles are not inherently risk-conferring with respect to their impact on social abilities; molecular investigations are greatly needed

    Formation of Ge-Sn nanodots on Si(100) surfaces by molecular beam epitaxy

    Get PDF
    The surface morphology of Ge0.96Sn0.04/Si(100) heterostructures grown at temperatures from 250 to 450°C by atomic force microscopy (AFM) and scanning tunnel microscopy (STM) ex situ has been studied. The statistical data for the density of Ge0.96Sn0.04 nanodots (ND) depending on their lateral size have been obtained. Maximum density of ND (6 × 1011 cm-2) with the average lateral size of 7 nm can be obtained at 250°C. Relying on the reflection of high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450°C follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the temperature of the substrate
    corecore