3,462 research outputs found

    Management of Acute Spinal Fractures in Ankylosing Spondylitis

    Get PDF
    Ankylosing Spondylitis (AS) is a multifactorial and polygenic rheumatic condition without a well-understood pathophysiology (Braun and Sieper (2007)). It results in chronic pain, deformity, and fracture of the axial skeleton. AS alters the biomechanical properties of the spine through a chronic inflammatory process, yielding a brittle, minimally compliant spinal column. Consequently, this patient population is highly susceptible to unstable spine fractures and associated neurologic devastation even with minimal trauma. Delay in diagnosis is not uncommon, resulting in inappropriate immobilization and treatment. Clinicians must maintain a high index of suspicion for fracture when evaluating this group to avoid morbidity and mortality. Advanced imaging studies in the form of multidetector CT and/or MRI should be employed to confirm the diagnosis. Initial immobilization in the patient's preinjury alignment is mandatory to prevent iatrogenic neurologic injury. Both nonoperative and operative treatments can be employed depending on the patient's age, comorbidities, and fracture stability. Operative techniques must be individually tailored for this patient population. A multidisciplinary team approach is best with preoperative nutritional assessment and pulmonary evaluation

    Historical changes in thermoregulatory traits of alpine butterflies reveal complex ecological and evolutionary responses to recent climate change

    Get PDF
    Abstract Background Trait evolution and plasticity are expected to interactively influence responses to climate change, but rapid changes in and increased variability of temperature may limit evolutionary responses. We use historical specimens to document changes in the size and thermoregulatory traits of a montane butterfly, Colias meadii, in Colorado, USA over the past 60 years (1953–2012). We quantify forewing wing length, ventral wing melanin that increases solar absorption, and the length of thorax setae that reduces convective heat loss. Results The mean of all three traits has increased during this time period despite climate warming. Phenological shifts may have extended the active season earlier at low elevations and later at high elevations, increasing exposure to cool temperatures and selecting for increases in thermoregulatory traits. Fitness increases at higher elevations due to warming could also increase thermoregulatory traits. Warmer temperatures during pupal development and later flight dates in the season are associated with decreased wing melanin, indicating a role of phenotypic plasticity in historical trait changes. Conclusions Phenotypic shifts result from a complex interplay of ecological and evolutionary responses to climate change. Environmental variability within and across seasons can limit the evolutionary responses of populations to increasing mean temperatures during climate change

    Neptune at Summer Solstice: Zonal Mean Temperatures from Ground-Based Observations 2003-2007

    Full text link
    Imaging and spectroscopy of Neptune's thermal infrared emission is used to assess seasonal changes in Neptune's zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is ±\pm5 K at 1 mbar and ±\pm3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane). At low and midlatitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 {\mu}m mapping of tropospheric temperatures and para-hydrogen disequilibrium suggests a symmetric meridional circulation with cold air rising at mid-latitudes (sub-equilibrium para-H2 conditions) and warm air sinking at the equator and poles (super-equilibrium para-H2 conditions). The most significant atmospheric changes are associated with the polar vortex (absent in 1989).Comment: 35 pages, 19 figures. Accepted for publication in Icaru

    The Effect of Music Familiarity on Students’ Reading Comprehension Performance

    Get PDF
    The current study examined 85 university students’ performance in a reading comprehension task under three conditions: silence, familiar, or unfamiliar music. The results indicated that the students in the familiar music condition performed significantly worse than those in the silent conditions, as well as those in the unfamiliar music condition

    Magneto-radiotherapy: making the electrons conform

    Get PDF
    Magneto-radiotherapy is the application of magnetic fields during radiotherapy procedures. It aims to improve the quality of cancer treatment by using magnetic fields to alter the dose-deposition of secondary electrons in tissue. This work compares the performance of PENELOPE and EGS4 MC codes for magnetic fields applied to conventional photon beams. It also investigates the effect of a magnetic field on the electron spectrum and explores the novel idea of applying magnetic fields to MRT (Microbeam Radiation Therapy) for the treatment infantile brain tumours

    Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae

    Get PDF
    ABSTRACT In many ectotherms, exposure to high temperatures can improve subsequent tolerance to higher temperatures. However, the differential effects of single, repeated or continuous exposure to high temperatures are less clear. We measured the effects of single heat shocks and of diurnally fluctuating or constant rearing temperatures on the critical thermal maximum (CTmax) for final instar larvae of Manduca sexta. Brief (2 h) heat shocks at temperatures of 35°C and above significantly increased CTmax relative to control temperatures (25°C). Increasing mean temperatures (from 25 to 30°C) or greater diurnal fluctuations (from constant to ±10°C) during larval development also significantly increased CTmax. Combining these data showed that repeated or continuous temperature exposure during development improved heat tolerance beyond the effects of a single exposure to the same maximum temperature. These results suggest that both acute and chronic temperature exposure can result in adaptive plasticity of upper thermal limits
    corecore