8,036 research outputs found
On the Red-Green-Blue Model
We experimentally study the red-green-blue model, which is a sytem of loops
obtained by superimposing three dimer coverings on offset hexagonal lattices.
We find that when the boundary conditions are ``flat'', the red-green-blue
loops are closely related to SLE_4 and double-dimer loops, which are the loops
formed by superimposing two dimer coverings of the cartesian lattice. But we
also find that the red-green-blue loops are more tightly nested than the
double-dimer loops. We also investigate the 2D minimum spanning tree, and find
that it is not conformally invariant.Comment: 4 pages, 7 figure
Stoichiometry, structure, and transport in the quasi-one-dimensional metal, Li(0.9)Mo(6)O(17)
A correlation between lattice parameters, oxygen composition, and the
thermoelectric and Hall coefficients is presented for single-crystal
Li(0.9)Mo(6)O(17), a quasi-one-dimensional (Q1D) metallic compound. The
possibility that this compound is a compensated metal is discussed in light of
a substantial variability observed in the literature for these transport
coefficients.Comment: 5 pages, 4 Figures; Phys. Rev. B (in press
Impurity Conduction and Magnetic Polarons in Antiferromagnetic Oxides
Low-temperature transport and magnetization measurements for the
antiferromagnets SrMnO(3) and CaMnO(3) identify an impurity band of mobile
states separated by energy E from electrons bound in Coulombic potentials. Very
weak electric fields are sufficient to excite bound electrons to the impurity
band, increasing the mobile carrier concentration by more than three orders of
magnitude. The data argue against the formation of self-trapped magnetic
polarons (MPs) predicted by theory, and rather imply that bound MPs become
stable only for kT<<E.Comment: 4 pp., 4 fig
Hole Localization in Underdoped Superconducting Cuprates Near 1/8th Doping
Measurements of thermal conductivity versus temperature over a broad range of
doping in YBaCuO and HgBaCaCuO
(=1,2,3) suggest that small domains of localized holes develop for hole
concentrations near =1/8. The data imply a mechanism for localization that
is intrinsic to the CuO-planes and is enhanced via pinning associated with
oxygen-vacancy clusters.Comment: 4 pages, 4 eps fig.'s, to be published, Phys. Rev.
Big brother is watching - using digital disease surveillance tools for near real-time forecasting
Abstract for the International Journal of Infectious Diseases 79 (S1) (2019).https://www.ijidonline.com/article/S1201-9712(18)34659-9/abstractPublished versio
Strain-controlled band engineering and self-doping in ultrathin LaNiO films
We report on a systematic study of the temperature-dependent Hall coefficient
and thermoelectric power in ultra-thin metallic LaNiO films that reveal a
strain-induced, self-doping carrier transition that is inaccessible in the
bulk. As the film strain varies from compressive to tensile at fixed
composition and stoichiometry, the transport coefficients evolve in a manner
strikingly similar to those of bulk hole-doped superconducting cuprates with
varying doping level. Density functional calculations reveal that the
strain-induced changes in the transport properties are due to self-doping in
the low-energy electronic band structure. The results imply that thin-film
epitaxy can serve as a new means to achieve hole-doping in other (negative)
charge-transfer gap transition metal oxides without resorting to chemical
substitution
Ballistic magnon heat conduction and possible Poiseuille flow in the helimagnetic insulator CuOSeO
We report on the observation of magnon thermal conductivity 70
W/mK near 5 K in the helimagnetic insulator CuOSeO, exceeding that
measured in any other ferromagnet by almost two orders of magnitude. Ballistic,
boundary-limited transport for both magnons and phonons is established below 1
K, and Poiseuille flow of magnons is proposed to explain a magnon mean-free
path substantially exceeding the specimen width for the least defective
specimens in the range 2 K 10 K. These observations establish
CuOSeO as a model system for studying long-wavelength magnon dynamics.Comment: 10pp, 9 figures, accepted PRB (Editor's Suggestion
Spherical codes, maximal local packing density, and the golden ratio
The densest local packing (DLP) problem in d-dimensional Euclidean space Rd
involves the placement of N nonoverlapping spheres of unit diameter near an
additional fixed unit-diameter sphere such that the greatest distance from the
center of the fixed sphere to the centers of any of the N surrounding spheres
is minimized. Solutions to the DLP problem are relevant to the realizability of
pair correlation functions for packings of nonoverlapping spheres and might
prove useful in improving upon the best known upper bounds on the maximum
packing fraction of sphere packings in dimensions greater than three. The
optimal spherical code problem in Rd involves the placement of the centers of N
nonoverlapping spheres of unit diameter onto the surface of a sphere of radius
R such that R is minimized. It is proved that in any dimension, all solutions
between unity and the golden ratio to the optimal spherical code problem for N
spheres are also solutions to the corresponding DLP problem. It follows that
for any packing of nonoverlapping spheres of unit diameter, a spherical region
of radius less than or equal to the golden ratio centered on an arbitrary
sphere center cannot enclose a number of sphere centers greater than one more
than the number that can be placed on the region's surface.Comment: 12 pages, 1 figure. Accepted for publication in the Journal of
Mathematical Physic
Addendum: "The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models" (ApJ, 481, 267 [1997])
It has recently come to our attention that there are axis scale errors in
three of the figures of Dull et al. (1997, hereafter D97). D97 presented
Fokker-Planck models for the collapsed-core globular cluster M15 that include a
dense, centrally concentrated population of neutron stars and massive white
dwarfs, but do not include a central black hole. In this Addendum, we present
corrected versions of Figures 9, 10, and 12, and an expanded version of Figure
6. This latter figure, which shows the full run of the velocity dispersion
profile, indicates that the D97 model predictions are in good agreement with
the moderately rising HST-STIS velocity dispersion profile for M15 reported by
Gerssen et al. (2002, astro-ph/0209315). Thus, a central black hole is not
required to fit the new STIS velocity measurements, provided that there is a
sufficient population of neutron stars and massive white dwarfs. This
conclusion is consistent with the findings of Gerssen et al. (2002,
astro-ph/0210158), based on a reapplication of their Jeans equation analysis
using the corrected mass-to-light profile (Figure 12) for the D97 models.Comment: 4 pages, 4 figures, submitted to Ap
- …