8,036 research outputs found

    On the Red-Green-Blue Model

    Full text link
    We experimentally study the red-green-blue model, which is a sytem of loops obtained by superimposing three dimer coverings on offset hexagonal lattices. We find that when the boundary conditions are ``flat'', the red-green-blue loops are closely related to SLE_4 and double-dimer loops, which are the loops formed by superimposing two dimer coverings of the cartesian lattice. But we also find that the red-green-blue loops are more tightly nested than the double-dimer loops. We also investigate the 2D minimum spanning tree, and find that it is not conformally invariant.Comment: 4 pages, 7 figure

    Stoichiometry, structure, and transport in the quasi-one-dimensional metal, Li(0.9)Mo(6)O(17)

    Get PDF
    A correlation between lattice parameters, oxygen composition, and the thermoelectric and Hall coefficients is presented for single-crystal Li(0.9)Mo(6)O(17), a quasi-one-dimensional (Q1D) metallic compound. The possibility that this compound is a compensated metal is discussed in light of a substantial variability observed in the literature for these transport coefficients.Comment: 5 pages, 4 Figures; Phys. Rev. B (in press

    Impurity Conduction and Magnetic Polarons in Antiferromagnetic Oxides

    Full text link
    Low-temperature transport and magnetization measurements for the antiferromagnets SrMnO(3) and CaMnO(3) identify an impurity band of mobile states separated by energy E from electrons bound in Coulombic potentials. Very weak electric fields are sufficient to excite bound electrons to the impurity band, increasing the mobile carrier concentration by more than three orders of magnitude. The data argue against the formation of self-trapped magnetic polarons (MPs) predicted by theory, and rather imply that bound MPs become stable only for kT<<E.Comment: 4 pp., 4 fig

    Hole Localization in Underdoped Superconducting Cuprates Near 1/8th Doping

    Full text link
    Measurements of thermal conductivity versus temperature over a broad range of doping in YBa2_2Cu3_3O6+x_{6+x} and HgBa2_2Can1_{n-1}Cun_nO2n+2+δ_{2n+2+\delta} (nn=1,2,3) suggest that small domains of localized holes develop for hole concentrations near pp=1/8. The data imply a mechanism for localization that is intrinsic to the CuO2_2-planes and is enhanced via pinning associated with oxygen-vacancy clusters.Comment: 4 pages, 4 eps fig.'s, to be published, Phys. Rev.

    Big brother is watching - using digital disease surveillance tools for near real-time forecasting

    Get PDF
    Abstract for the International Journal of Infectious Diseases 79 (S1) (2019).https://www.ijidonline.com/article/S1201-9712(18)34659-9/abstractPublished versio

    Strain-controlled band engineering and self-doping in ultrathin LaNiO3_3 films

    Full text link
    We report on a systematic study of the temperature-dependent Hall coefficient and thermoelectric power in ultra-thin metallic LaNiO3_3 films that reveal a strain-induced, self-doping carrier transition that is inaccessible in the bulk. As the film strain varies from compressive to tensile at fixed composition and stoichiometry, the transport coefficients evolve in a manner strikingly similar to those of bulk hole-doped superconducting cuprates with varying doping level. Density functional calculations reveal that the strain-induced changes in the transport properties are due to self-doping in the low-energy electronic band structure. The results imply that thin-film epitaxy can serve as a new means to achieve hole-doping in other (negative) charge-transfer gap transition metal oxides without resorting to chemical substitution

    Ballistic magnon heat conduction and possible Poiseuille flow in the helimagnetic insulator Cu2_2OSeO3_3

    Full text link
    We report on the observation of magnon thermal conductivity κm\kappa_m\sim 70 W/mK near 5 K in the helimagnetic insulator Cu2_2OSeO3_3, exceeding that measured in any other ferromagnet by almost two orders of magnitude. Ballistic, boundary-limited transport for both magnons and phonons is established below 1 K, and Poiseuille flow of magnons is proposed to explain a magnon mean-free path substantially exceeding the specimen width for the least defective specimens in the range 2 K <T<<T< 10 K. These observations establish Cu2_2OSeO3_3 as a model system for studying long-wavelength magnon dynamics.Comment: 10pp, 9 figures, accepted PRB (Editor's Suggestion

    Spherical codes, maximal local packing density, and the golden ratio

    Full text link
    The densest local packing (DLP) problem in d-dimensional Euclidean space Rd involves the placement of N nonoverlapping spheres of unit diameter near an additional fixed unit-diameter sphere such that the greatest distance from the center of the fixed sphere to the centers of any of the N surrounding spheres is minimized. Solutions to the DLP problem are relevant to the realizability of pair correlation functions for packings of nonoverlapping spheres and might prove useful in improving upon the best known upper bounds on the maximum packing fraction of sphere packings in dimensions greater than three. The optimal spherical code problem in Rd involves the placement of the centers of N nonoverlapping spheres of unit diameter onto the surface of a sphere of radius R such that R is minimized. It is proved that in any dimension, all solutions between unity and the golden ratio to the optimal spherical code problem for N spheres are also solutions to the corresponding DLP problem. It follows that for any packing of nonoverlapping spheres of unit diameter, a spherical region of radius less than or equal to the golden ratio centered on an arbitrary sphere center cannot enclose a number of sphere centers greater than one more than the number that can be placed on the region's surface.Comment: 12 pages, 1 figure. Accepted for publication in the Journal of Mathematical Physic

    Addendum: "The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models" (ApJ, 481, 267 [1997])

    Full text link
    It has recently come to our attention that there are axis scale errors in three of the figures of Dull et al. (1997, hereafter D97). D97 presented Fokker-Planck models for the collapsed-core globular cluster M15 that include a dense, centrally concentrated population of neutron stars and massive white dwarfs, but do not include a central black hole. In this Addendum, we present corrected versions of Figures 9, 10, and 12, and an expanded version of Figure 6. This latter figure, which shows the full run of the velocity dispersion profile, indicates that the D97 model predictions are in good agreement with the moderately rising HST-STIS velocity dispersion profile for M15 reported by Gerssen et al. (2002, astro-ph/0209315). Thus, a central black hole is not required to fit the new STIS velocity measurements, provided that there is a sufficient population of neutron stars and massive white dwarfs. This conclusion is consistent with the findings of Gerssen et al. (2002, astro-ph/0210158), based on a reapplication of their Jeans equation analysis using the corrected mass-to-light profile (Figure 12) for the D97 models.Comment: 4 pages, 4 figures, submitted to Ap
    corecore