674 research outputs found

    Do Quasars Lens Quasars?

    Get PDF
    If the unexpectedly high frequency of quasar pairs with very different component redshifts is due to the lensing of a population of background quasars by the foreground quasar, typical lens masses must be \sim10^{12}M_{\sun} and the sum of all such quasar lenses would have to contain 0.005\sim0.005 times the closure density of the Universe. It then seems plausible that a very high fraction of all \sim10^{12} M_{\sun} gravitational lenses with redshifts z1z\sim1 contain quasars. Here I propose that these systems have evolved to form the present population of massive galaxies with MB22_{\rm B}\leq-22 and M >5\times10^{11} M_{\sun}.Comment: 6 pages, aas style, ams symbols, ApJL (accepted

    The Distribution of Redshifts in New Samples of Quasi-stellar Objects

    Get PDF
    Two new samples of QSOs have been constructed from recent surveys to test the hypothesis that the redshift distribution of bright QSOs is periodic in log(1+z)\log(1+z). The first of these comprises 57 different redshifts among all known close pairs or multiple QSOs, with image separations \leq 10\arcsec, and the second consists of 39 QSOs selected through their X-ray emission and their proximity to bright comparatively nearby active galaxies. The redshift distributions of the samples are found to exhibit distinct peaks with a periodic separation of 0.089\sim 0.089 in log(1+z)\log(1+z) identical to that claimed in earlier samples but now extended out to higher redshift peaks z=2.63,3.45z = 2.63, 3.45 and 4.47, predicted by the formula but never seen before. The periodicity is also seen in a third sample, the 78 QSOs of the 3C and 3CR catalogues. It is present in these three datasets at an overall significance level 10510^{-5} - 10610^{-6}, and appears not to be explicable by spectroscopic or similar selection effects. Possible interpretations are briefly discussed.Comment: submitted for publication in the Astronomical Journal, 15 figure

    Changes in r-process abundances at late times

    Get PDF
    We explore changes in abundance patterns that occur late in the r process. As the neutrons available for capture begin to disappear, a quasiequilibrium funnel shifts material into the large peaks at A=130 and A=195, and into the rare-earth "bump" at A=160. A bit later, after the free-neutron abundance has dropped and beta-decay has begun to compete seriously with neutron capture, the peaks can widen. The degree of widening depends largely on neutron-capture rates near closed neutron shells and relatively close to stability. We identify particular nuclei the capture rates of which should be examined experimentally, perhaps at a radioactive beam facility.Comment: 8 pages, 14 figures included in tex

    Cosmology and Cosmogony in a Cyclic Universe

    Get PDF
    In this paper we discuss the properties of the quasi-steady state cosmological model (QSSC) developed in 1993 in its role as a cyclic model of the universe driven by a negative energy scalar field. We discuss the origin of such a scalar field in the primary creation process first described by F. Hoyle and J. V. Narlikar forty years ago. It is shown that the creation processes which takes place in the nuclei of galaxies are closely linked to the high energy and explosive phenomena, which are commonly observed in galaxies at all redshifts. The cyclic nature of the universe provides a natural link between the places of origin of the microwave background radiation (arising in hydrogen burning in stars), and the origin of the lightest nuclei (H, D, He3^3 and He4^4). It also allows us to relate the large scale cyclic properties of the universe to events taking place in the nuclei of galaxies. Observational evidence shows that ejection of matter and energy from these centers in the form of compact objects, gas and relativistic particles is responsible for the population of quasi-stellar objects (QSOs) and gamma-ray burst sources in the universe. In the later parts of the paper we briefly discuss the major unsolved problems of this integrated cosmological and cosmogonical scheme. These are the understanding of the origin of the intrinsic redshifts, and the periodicities in the redshift distribution of the QSOs.Comment: 51 pages including 1 figur

    A Parsec-Scale Study of the 5/15 GHz Spectral Indices of the Compact Radio Sources in M82

    Get PDF
    Observations of the starburst galaxy, M82, have been made with the VLA in its A-configuration at 15 GHz and MERLIN at 5 GHz enabling a spectral analysis of the compact radio structure on a scale of < 0.1'' (1.6 pc). Crucial to these observations was the inclusion of the Pie Town VLBA antenna, which increased the resolution of the VLA observations by a factor of ~2. A number of the weaker sources are shown to have thermal spectra and are identified as HII regions with emission measures ~10^7 cm^-6 pc. Some of the sources appear to be optically thick at 5 GHz implying even higher emission measures of ~10^8 cm^-6 pc. The number of compact radio sources in M82 whose origin has been determined is now 46, of which 30 are supernova related and the remaining 16 are HII regions. An additional 15 sources are noted, but have yet to be identified, meaning that the total number of compact sources in M82 is at least 61. Also, it is shown that the distribution of HII regions is correlated with the large-scale ionised gas distribution, but is different from the distribution of supernova remnants. In addition, the brightest HII region at (B1950) 09h 51m 42.21s +69 54' 59.2'' shows a spectral index gradient across its resolved structure which we attribute to the source becoming optically thick towards its centre.Comment: Accepted for publication in MNRAS. 15 pages, 9 figure

    Modeling Repulsive Gravity with Creation

    Get PDF
    There is a growing interest in the cosmologists for theories with negative energy scalar fields and creation, in order to model a repulsive gravity. The classical steady state cosmology proposed by Bondi, Gold and Hoyle in 1948, was the first such theory which used a negative kinetic energy creation field to invoke creation of matter. We emphasize that creation plays very crucial role in cosmology and provides a natural explanation to the various explosive phenomena occurring in local (z<0.1) and extra galactic universe. We exemplify this point of view by considering the resurrected version of this theory - the quasi-steady state theory, which tries to relate creation events directly to the large scale dynamics of the universe and supplies more natural explanations of the observed phenomena. Although the theory predicts a decelerating universe at the present era, it explains successfully the recent SNe Ia observations (which require an accelerating universe in the standard cosmology), as we show in this paper by performing a Bayesian analysis of the data.Comment: The paper uses an old SNeIa dataset. With the new improved data, for example the updated gold sample (Riess et al, astro-ph/0611572), the fit improves considerably (\chi^2/DoF=197/180 and a probability of goodness-of-fit=18%

    Hybrid nature of 0846+51W1: a BL Lac object with a narrow line Seyfert 1 nucleus

    Full text link
    We have found a NLS1 nucleus in the extensively studied eruptive BL Lac, 0846+51W1, out of a large sample of NLS1 compiled from the spectroscopic dataset of SDSS DR1. Its optical spectrum can be well decomposed into three components, a power law component from the relativistic jet, a stellar component from the host galaxy, and a component from a typical NLS1 nucleus. The emission line properties of 0846+51W1, FWHM(Hbeta) ~ 1710 km s^-1 and [OIII]5007/Hbeta ~ 0.32 when it was in faint state, fulfil the conventional definition of NLS1. Strong FeII emission is detected in the SDSS spectrum, which is also typical of NLS1s. We try to estimate its central black hole mass using various techniques and find that 0846+51W1 is very likely emitting at a few times 10% L_Edd. We speculate that Seyfert-like nuclei, including NLS1s, might be concealed in a significant fraction of BL Lacs but have not been sufficiently explored due to the fact that, by definition, the optical-UV continuum of such kind of objects are often overwhelmed by the synchrotron emission.Comment: ChJAA accepte

    Molecular Gas Kinematics in Barred Spiral Galaxies

    Get PDF
    To quantify the effect that bar driven mass inflow can have on the evolution of a galaxy requires an understanding of the dynamics of the inflowing gas. In this paper we study the kinematics of the dense molecular gas in a set of seven barred spiral galaxies to determine which dynamical effects dominate. The kinematics are derived from observations of the CO J=(1-0) line made with the Berkeley-Illinois-Maryland Association (BIMA) millimeter array. We compare the observed kinematics to those predicted by ideal gas hydrodynamic and ballistic cloud-based models of gas flow in a barred potential. The hydrodynamic model is in good qualitative agreement with both the current observations of the dense gas and previous observations of the kinematics of the ionized gas. The observed kinematics indicate that the gas abruptly changes direction upon entering the dust lanes to flow directly down the dust lanes along the leading edge of the bar until the dust lanes approach the nuclear ring. Near the location where the dust lanes intersect the nuclear ring, we see two velocity components: a low velocity component, corresponding to gas on circular orbits, and a higher velocity component, which can be attributed to the fraction of gas flowing down the bar dust lane which sprays past the contact point toward the other half of the bar. The ballistic cloud-based model of the ISM is not consistent with the observed kinematics. The kinematics in the dust lanes require large velocity gradients which cannot be reproduced by an ISM composed of ballistic clouds with long mean-free-paths. Therefore, even the dense ISM responds to hydrodynamic forces.Comment: To be published in the Astrophysical Journal, Nov. 20, 199

    Globular Clusters as Candidates for Gravitational Lenses to Explain Quasar-Galaxy Associations

    Full text link
    We argue that globular clusters (GCs) are good candidates for gravitational lenses in explaining quasar-galaxy associations. The catalog of associations (Bukhmastova 2001) compiled from the LEDA catalog of galaxies (Paturel 1997) and from the catalog of quasars (Veron-Cetty and Veron 1998) is used. Based on the new catalog containing 8382 pairs, we show that one might expect an increased number of GCs around irregular galaxies of types 9 and 10 from the hypothesis that distant compact sources are gravitationally lensed by GCs in the halos of foreground galaxies. The King model is used to determine the central surface densities of 135 GCs in the Milky Way. The distribution of GCs in central surface density was found to be lognormal.Comment: 22 pages, 4 figure

    Particle-Number Reprojection in the Shell Model Monte Carlo Method: Application to Nuclear Level Densities

    Full text link
    We introduce a particle-number reprojection method in the shell model Monte Carlo that enables the calculation of observables for a series of nuclei using a Monte Carlo sampling for a single nucleus. The method is used to calculate nuclear level densities in the complete (pf+g9/2)(pf+g_{9/2})-shell using a good-sign Hamiltonian. Level densities of odd-A and odd-odd nuclei are reliably extracted despite an additional sign problem. Both the mass and the TzT_z dependence of the experimental level densities are well described without any adjustable parameters. The single-particle level density parameter is found to vary smoothly with mass. The odd-even staggering observed in the calculated backshift parameter follows the experimental data more closely than do empirical formulae.Comment: 14 pages, 4 eps figures included, RevTe
    corecore