267 research outputs found

    Ultra-Slow Vacancy-Mediated Tracer Diffusion in Two Dimensions: The Einstein Relation Verified

    Full text link
    We study the dynamics of a charged tracer particle (TP) on a two-dimensional lattice all sites of which except one (a vacancy) are filled with identical neutral, hard-core particles. The particles move randomly by exchanging their positions with the vacancy, subject to the hard-core exclusion. In case when the charged TP experiences a bias due to external electric field E{\bf E}, (which favors its jumps in the preferential direction), we determine exactly the limiting probability distribution of the TP position in terms of appropriate scaling variables and the leading large-N (nn being the discrete time) behavior of the TP mean displacement Xˉn\bar{{\bf X}}_n; the latter is shown to obey an anomalous, logarithmic law ∣Xˉn∣=α0(∣E∣)ln⁥(n)|\bar{{\bf X}}_n| = \alpha_0(|{\bf E}|) \ln(n). On comparing our results with earlier predictions by Brummelhuis and Hilhorst (J. Stat. Phys. {\bf 53}, 249 (1988)) for the TP diffusivity DnD_n in the unbiased case, we infer that the Einstein relation ÎŒn=ÎČDn\mu_n = \beta D_n between the TP diffusivity and the mobility ÎŒn=lim⁥∣E∣→0(∣Xˉn∣/∣E∣n)\mu_n = \lim_{|{\bf E}| \to 0}(|\bar{{\bf X}}_n|/| {\bf E} |n) holds in the leading in nn order, despite the fact that both DnD_n and ÎŒn\mu_n are not constant but vanish as n→∞n \to \infty. We also generalize our approach to the situation with very small but finite vacancy concentration ρ\rho, in which case we find a ballistic-type law ∣Xˉn∣=πα0(∣E∣)ρn|\bar{{\bf X}}_n| = \pi \alpha_0(|{\bf E}|) \rho n. We demonstrate that here, again, both DnD_n and ÎŒn\mu_n, calculated in the linear in ρ\rho approximation, do obey the Einstein relation.Comment: 25 pages, one figure, TeX, submitted to J. Stat. Phy

    Kinetics of active surface-mediated diffusion in spherically symmetric domains

    Full text link
    We present an exact calculation of the mean first-passage time to a target on the surface of a 2D or 3D spherical domain, for a molecule alternating phases of surface diffusion on the domain boundary and phases of bulk diffusion. We generalize the results of [J. Stat. Phys. {\bf 142}, 657 (2011)] and consider a biased diffusion in a general annulus with an arbitrary number of regularly spaced targets on a partially reflecting surface. The presented approach is based on an integral equation which can be solved analytically. Numerically validated approximation schemes, which provide more tractable expressions of the mean first-passage time are also proposed. In the framework of this minimal model of surface-mediated reactions, we show analytically that the mean reaction time can be minimized as a function of the desorption rate from the surface.Comment: Published online in J. Stat. Phy

    Mean first-passage times of non-Markovian random walkers in confinement

    Get PDF
    The first-passage time (FPT), defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role to quantify the efficiency of processes as varied as diffusion-limited reactions, target search processes or spreading of diseases. Most methods to determine the FPT properties in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects can not be neglected. Examples of non Markovian dynamics include single-file diffusion in narrow channels or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics \cite{turiv2013effect}, dense soft colloids or viscoelastic solution. Here, we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean FPT of a Gaussian non-Markovian random walker to a target point. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the trajectory of the random walker in the future of the first-passage event, which are shown to govern the FPT kinetics.This analysis is applicable to a broad range of stochastic processes, possibly correlated at long-times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes including the emblematic case of the Fractional Brownian Motion in one or higher dimensions. These results show, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.Comment: Submitted version. Supplementary Information can be found on the Nature website : http://www.nature.com/nature/journal/v534/n7607/full/nature18272.htm

    Microscopic Model of Charge Carrier Transfer in Complex Media

    Full text link
    We present a microscopic model of a charge carrier transfer under an action of a constant electric field in a complex medium. Generalizing previous theoretical approaches, we model the dynamical environment hindering the carrier motion by dynamic percolation, i.e., as a medium comprising particles which move randomly on a simple cubic lattice, constrained by hard-core exclusion, and may spontaneously annihilate and re-appear at some prescribed rates. We determine analytically the density profiles of the "environment" particles, as seen from the stationary moving charge carrier, and calculate its terminal velocity as the function of the applied field and other system parameters. We realize that for sufficiently small external fields the force exerted on the carrier by the "environment" particles shows a viscous-like behavior and define an analog of the Stokes formula for such dynamic percolative environments. The corresponding friction coefficient is also derived.Comment: appearing in Chem. Phys. Special Issue on Molecular Charge Transfer in Condensed Media - from Physics and Chemistry to Biology and Nano-Engineering, edited by A.Kornyshev (Imperial College London), M.Newton (Brookhaven Natl Lab) and J.Ulstrup (Technical University of Denmark

    Windings of the 2D free Rouse chain

    Full text link
    We study long time dynamical properties of a chain of harmonically bound Brownian particles. This chain is allowed to wander everywhere in the plane. We show that the scaling variables for the occupation times T_j, areas A_j and winding angles \theta_j (j=1,...,n labels the particles) take the same general form as in the usual Brownian motion. We also compute the asymptotic joint laws P({T_j}), P({A_j}), P({\theta_j}) and discuss the correlations occuring in those distributions.Comment: Latex, 17 pages, submitted to J. Phys.

    Enhanced reaction kinetics in biological cells

    Full text link
    The cell cytoskeleton is a striking example of "active" medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.Comment: 10 pages, 2 figure

    Force-velocity relation and density profiles for biased diffusion in an adsorbed monolayer

    Full text link
    In this paper, which completes our earlier short publication [Phys. Rev. Lett. 84, 511 (2000)], we study dynamics of a hard-core tracer particle (TP) performing a biased random walk in an adsorbed monolayer, composed of mobile hard-core particles undergoing continuous exchanges with a vapor phase. In terms of an approximate approach, based on the decoupling of the third-order correlation functions, we obtain the density profiles of the monolayer particles around the TP and derive the force-velocity relation, determining the TP terminal velocity, V_{tr}, as the function of the magnitude of external bias and other system's parameters. Asymptotic forms of the monolayer particles density profiles at large separations from the TP, and behavior of V_{tr} in the limit of small external bias are found explicitly.Comment: Latex, 31 pages, 3 figure
    • 

    corecore