20,373 research outputs found
The Amorphous-Crystal Interface in Silicon: a Tight-Binding Simulation
The structural features of the interface between the cystalline and amorphous
phases of Si solid are studied in simulations based on a combination of
empirical interatomic potentials and a nonorthogonal tight-binding model. The
tight-binding Hamiltonian was created and tested for the types of structures
and distortions anticipated to occur at this interface. The simulations
indicate the presence of a number of interesting features near the interface.
The features that may lead to crystallization upon heating include chains
with some defects, most prominently dimers similar to those on the Si(001) 2x1
reconstructed free surface. Within the amorphous region order is lost over very
short distances. By examining six different samples with two interfaces each,
we find the energy of the amorphous-crystal interface to be 0.49 +/- 0.05 J/m^2Comment: Submitted to Phys. Rev.
On the stabilization of ion sputtered surfaces
The classical theory of ion beam sputtering predicts the instability of a
flat surface to uniform ion irradiation at any incidence angle. We relax the
assumption of the classical theory that the average surface erosion rate is
determined by a Gaussian response function representing the effect of the
collision cascade and consider the surface dynamics for other
physically-motivated response functions. We show that although instability of
flat surfaces at any beam angle results from all Gaussian and a wide class of
non-Gaussian erosive response functions, there exist classes of modifications
to the response that can have a dramatic effect. In contrast to the classical
theory, these types of response render the flat surface linearly stable, while
imperceptibly modifying the predicted sputter yield vs. incidence angle. We
discuss the possibility that such corrections underlie recent reports of a
``window of stability'' of ion-bombarded surfaces at a range of beam angles for
certain ion and surface types, and describe some characteristic aspects of
pattern evolution near the transition from unstable to stable dynamics. We
point out that careful analysis of the transition regime may provide valuable
tests for the consistency of any theory of pattern formation on ion sputtered
surfaces
Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling
X-ray photoelectron spectra provide a wealth of information on the electronic
structure. The extraction of molecular details requires adequate theoretical
methods, which in case of transition metal complexes has to account for effects
due to the multi-configurational and spin-mixed nature of the many-electron
wave function. Here, the Restricted Active Space Self-Consistent Field method
including spin-orbit coupling is used to cope with this challenge and to
calculate valence and core photoelectron spectra. The intensities are estimated
within the frameworks of the Dyson orbital formalism and the sudden
approximation. Thereby, we utilize an efficient computational algorithm that is
based on a biorthonormal basis transformation. The approach is applied to the
valence photoionization of the gas phase water molecule and to the core
ionization spectrum of the complex.
The results show good agreement with the experimental data obtained in this
work, whereas the sudden approximation demonstrates distinct deviations from
experiments
Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications
Due to the increasing demand for harvesting energy from environmental vibration, for use in self-powered electronic applications, cantilever-based vibration energy harvesting has attracted great interest from various parties and become one of the most common approaches to convert redundant mechanical energy into electrical energy. As the output voltage produces from a piezoelectric material depends greatly on the geometric shape and the size of the beam, there is a need to model and compare the performance of cantilever beams of differing geometries. This paper presents the study of strain distribution in various shapes of cantilever beams, including a convex and concave edge profile elliptical beams that have been overseen in most of the prior literature. Both analytical and finite element models are derived and the resultant strain distributions in the beam are computed based on MATLAB solver and ANSYS finite element analysis tools. An optimum geometry for a vibration-based energy harvester system is verified. Lastly, experimental results comparing the power density for a triangular and rectangular piezoelectric beams are also presented to validate the finding of the study and the claim as suggested in the literature is verified
Evolution of Nanoporosity in Dealloying
Dealloying is a common corrosion process during which an alloy is "parted" by
the selective dissolution of the electrochemically more active elements. This
process results in the formation of a nanoporous sponge composed almost
entirely of the more noble alloy constituents . Even though this morphology
evolution problem has attracted considerable attention, the physics responsible
for porosity evolution have remained a mystery . Here we show by experiment,
lattice computer simulation, and a continuum model, that nanoporosity is due to
an intrinsic dynamical pattern formation process - pores form because the more
noble atoms are chemically driven to aggregate into two-dimensional clusters
via a spinodal decomposition process at the solid-electrolyte interface. At the
same time, the surface area continuously increases due to etching. Together,
these processes evolve a characteristic length scale predicted by our continuum
model. The applications potential of nanoporous metals is enormous. For
instance, the high surface area of nanoporous gold made by dealloying Ag-Au can
be chemically tailored, making it suitable for sensor applications,
particularly in biomaterials contexts.Comment: 13 pages, PDF, incl. 4 figures. avi movies of simulations available
at http://www.deas.harvard.edu/matsci/downdata/downdata.htm
- …