1,010 research outputs found
Genetic diversity in native Bulgarian grapevine germplasm (Vitis vinifera L.) based on nuclear and chloroplast microsatellite polymorphisms
Fifty one wild specimens collected in different areas in Bulgaria and nineteen native Bulgarian grapevine cultivars were genotyped with 7 nuclear and 5 chloroplast SSR markers. Based on the microsatellite allelic profile six wild samples, collected from the Danube Riverbank, were considered non vinifera genotypes. The genetic diversity for nuclear loci observed in the cultivated grapevines was comparable to that found in other cultivated collections. However, lower genetic diversity was observed in the set of wild samples. The dendrogram based on nuclear SSRs separated most of the cultivated grapevines from the wild samples. Four chlorotypes corresponding to previously determined chlorotypes A, B, C and D, were identified in the analyzed samples that occurred with different frequencies in groups of wild and cultivated plants. The most frequent chlorotype among wild samples was A, while it was C in the cultivated samples. The differentiation of Bulgarian grape chlorotypes in the context of differentiation of chlorotypes in Eurasian grape flora is discussed.
An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs
Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty.
Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed.
Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven
Influence of Malolactic Fermentation on the Quality of Riesling Wine
Biotic and abiotic stress has a negative effect on both the quality and quantity of grape production. Like many woody crops, grape has been relatively recalcitrant to in vitro manipulations. The crucial point in the process of genetic transformation is to have cells that are able to both regenerate and be transformed. A regeneration system seems to be a major problem in the transformation process. Somatic embryogenesis is the favoured regenerative protocol in genetic transformations of grapes. Comparison of an embryogenic and organogenic system in grape demonstrated that organogenesis frequently leads to chemical transformation of tissues. In this respect we started to develop and apply procedures suitable for the genetic transformation of grapevine. Two sources of explants were used for embryo induction. In the first case, immature zygotic ovules of Vitis vinifera seedless genotypes were used. In the second case in vivo leaf tissues from rootstocks Vitis rupestris cv. Rupestris du Lot and 110 Richter (Vitis berlandieri x Vitis rupestris). Continual transfer to fresh medium maintained embryogenic cultures. Agrobacterium tumefaciens mediated transformation of enbryogenic cultures of seedless grapes (Vitis vinifera L.) with constructs containing the gene encoding the coat protein of Grape Fanleaf Virus (GFLV) and with four constructs containing genes encoding for an antifreeze protein. An embryogenic culture of rootstock Vitis rupestris cv. Rupestris du Lot was transformed with a construct carrying the bete-glucoronidase (GUS) gene. The first transformed plantlets have been regenerated from somatic embryos and the presence of the NPTII gene was verified by PCR and Southern blot analyses
Bipolar querying of valid-time intervals subject to uncertainty
Databases model parts of reality by containing data representing properties of real-world objects or concepts. Often, some of these properties are time-related. Thus, databases often contain data representing time-related information. However, as they may be produced by humans, such data or information may contain imperfections like uncertainties. An important purpose of databases is to allow their data to be queried, to allow access to the information these data represent. Users may do this using queries, in which they describe their preferences concerning the data they are (not) interested in. Because users may have both positive and negative such preferences, they may want to query databases in a bipolar way. Such preferences may also have a temporal nature, but, traditionally, temporal query conditions are handled specifically. In this paper, a novel technique is presented to query a valid-time relation containing uncertain valid-time data in a bipolar way, which allows the query to have a single bipolar temporal query condition
More supplements to a class of logarithmically completely monotonic functions associated with the gamma function
In this article, a necessary and sufficient condition and a necessary
condition are established for a function involving the gamma function to be
logarithmically completely monotonic on . As applications of the
necessary and sufficient condition, some inequalities for bounding the psi and
polygamma functions and the ratio of two gamma functions are derived.Comment: 8 page
High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application
© 2015, Macmillan Publishers Limited. All rights reserved. For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in "clean" conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167±6μWcm-2 and remained stable over 16 days, while SCMFC with Pt decreased to 113±4μWcm-2 by day 13, achieving similar values of an activated carbon based cathode. The presence of S2- and SO42- showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater
Increased power generation in supercapacitive microbial fuel cell stack using Fe-N-C cathode catalyst
The anode and cathode electrodes of a microbial fuel cell (MFC) stack, composed of 28 single MFCs, were used as
the negative and positive electrodes, respectively of an internal self-charged supercapacitor. Particularly, carbon
veil was used as the negative electrode and activated carbon with a Fe-based catalyst as the positive electrode.
The red-ox reactions on the anode and cathode, self-charged these electrodes creating an internal electrochemical
double layer capacitor. Galvanostatic discharges were performed at different current and time pulses.
Supercapacitive-MFC (SC-MFC) was also tested at four different solution conductivities. SC-MFC had an
equivalent series resistance (ESR) decreasing from 6.00 Ω to 3.42 Ω in four solutions with conductivity between
2.5 mScm−1 and 40 mScm−1. The ohmic resistance of the positive electrode corresponded to 75–80% of the
overall ESR. The highest performance was achieved with a solution conductivity of 40 mS cm−1 and this was due
to the positive electrode potential enhancement for the utilization of Fe-based catalysts. Maximum power was
36.9mW (36.9Wm−3) that decreased with increasing pulse time. SC-MFC was subjected to 4520 cycles (8 days)
with a pulse time of 5 s (ipulse 55 mA) and a self-recharging time of 150 s showing robust reproducibility
The First 1 1/2 Years of TOTEM Roman Pot Operation at LHC
Since the LHC running season 2010, the TOTEM Roman Pots (RPs) are fully
operational and serve for collecting elastic and diffractive proton-proton
scattering data. Like for other moveable devices approaching the high intensity
LHC beams, a reliable and precise control of the RP position is critical to
machine protection. After a review of the RP movement control and position
interlock system, the crucial task of alignment will be discussed.Comment: 3 pages, 6 figures; 2nd International Particle Accelerator Conference
(IPAC 2011), San Sebastian, Spain; contribution MOPO01
On the incorporation of interval-valued fuzzy sets into the Bousi-Prolog system: declarative semantics, implementation and applications
In this paper we analyse the benefits of incorporating interval-valued fuzzy
sets into the Bousi-Prolog system. A syntax, declarative semantics and im-
plementation for this extension is presented and formalised. We show, by using
potential applications, that fuzzy logic programming frameworks enhanced with
them can correctly work together with lexical resources and ontologies in order
to improve their capabilities for knowledge representation and reasoning
- …