1,940 research outputs found

    Vortices near surfaces of Bose-Einstein condensates

    Full text link
    The theory of vortex motion in a dilute superfluid of inhomogeneous density demands a boundary layer approach, in which different approximation schemes are employed close to and far from the vortex, and their results matched smoothly together. The most difficult part of this procedure is the hydrodynamic problem of the velocity field many healing lengths away from the vortex core. This paper derives and exploits an exact solution of this problem in the two-dimensional case of a linear trapping potential, which is an idealization of the surface region of a large condensate. It thereby shows that vortices in inhomogeneous clouds are effectively 'dressed' by a non-trivial distortion of their flow fields; that image vortices are not relevant to Thomas-Fermi surfaces; and that for condensates large compared to their surface depths, the energetic barrier to vortex penetration disappears at the Landau critical velocity for surface modes.Comment: 14 pages, 4 figures. Error in review section corrected, notation simplified, typos corrected. No changes to any results, but a significantly clearer presentatio

    An extension of Bogoliubov theory for a many-body system with a time scale hierarchy: the quantum mechanics of second Josephson oscillations

    Full text link
    Adiabatic approximations are a powerful tool for simplifying nonlinear quantum dynamics, and are applicable whenever a system exhibits a hierarchy of time scales. Current interest in small nonlinear quantum systems, such as few-mode Bose-Hubbard models, warrants further development of adiabatic methods in the particular context of these models. Here we extend our recent work on a simple four-mode Bose-Hubbard model with two distinct dynamical time scales, in which we showed that among the perturbations around excited stationary states of the system is a slow collective excitation that is not present in the Bogoliubov spectrum. We characterized this mode as a resonant energy exchange with its frequency shifted by nonlinear effects, and referred to it as a second Josephson oscillation, in analogy with the second sound mode of liquid helium II. We now generalize our previous theory beyond the mean field regime, and construct a general Bogoliubov free quasiparticle theory that explicitly respects the system's adiabatic invariant as well the exact conservation of particles. We compare this theory to the numerically exact quantum energy spectrum with up to forty particles, and find good agreement over a significant range of parameter space

    Quantum dynamics of Bose-Hubbard Hamiltonians beyond Hartree-Fock-Bogoliubov: The Bogoliubov backreaction approximation

    Full text link
    e formulate a method for studying the quantum field dynamics of ultracold Bose gases confined within optical lattice potentials, within the lowest Bloch-band Bose-Hubbard model. Our formalism extends the two-sites results of Phys. Rev. Lett. {\bf86}, 000568 (2001) to the general case of MM lattice sites. The methodology is based on mapping the Bose-Hubbard Hamiltonian to an SU(M)SU(M) pseudospin problem and truncating the resulting hierarchy of dynamical equations for correlation functions, up to pair-correlations between SU(M)SU(M) generators. Agreement with few-site exact many-particle calculations is consistently better than the corresponding Hartree-Fock-Bogoliubov approximation. Moreover, our approximation compares favorably with a more elaborate two-particle irreducible effective action formalism, at a fraction of the analytic and numerical effort.Comment: 8 pages, 7 figure
    corecore