1,333 research outputs found
East Asia and the global/transatlantic/Western crisis
This paper introduces the special collection on East Asia and the Global Crisis. After justifying why a focus on East Asia is appropriate, it draws out the main themes that run through the individual contributions. These are the extent to which the region is decoupling from the global economy (or the West), the increasing legitimacy of statist alternatives to neoliberal development strategies, and the impact of crises on the definition of ―region‖ and the functioning of regional institutions and governance mechanisms
Recommended from our members
Three dimensional numerical simulations of the UPS-292-SC engine
We present and analyze three-dimensional calculations of the spray, mixing and combustion in the UPS-292 stratified charge engine for three different operating conditions, corresponding to overall air-fuel ratios between 22.4 and 61.0. The numerical calculations are performed with KIVA, a multidimensional arbitrary-mesh, finite-difference hydrodynamics program for internal combustion engine applications. The calculations use a mesh of 10,000 computational cells, which conform to the shape of the piston bowl and cylinder and move to follow piston motion. Each operating condition is calculated from intake valve closure at 118/sup 0/ BTDC to 90/sup 0/ ATDC and requires approximately three hours of CRAY-XMP computer time
Surface tension implementation for Gensmac 2D
In the present work we describe a method which allows the incorporation of surface tension into the GENSMAC2D code. This is achieved on two scales. First on the scale of a cell, the surface tension effects are incorporated into the free surface boundary conditions through the computation of the capillary pressure. The required curvature is estimated by fitting a least square circle to the free surface using the tracking particles in the cell and in its close neighbors. On a sub-cell scale, short wavelength perturbations are filtered out using a local 4-point stencil which is mass conservative. An efficient implementation is obtained through a dual representation of the cell data, using both a matrix representation, for ease at identifying neighbouring cells, and also a tree data structure, which permits the representation of specific groups of cells with additional information pertaining to that group. The resulting code is shown to be robust, and to produce accurate results when compared with exact solutions of selected fluid dynamic problems involving surface tension
Hydrodynamic modeling of deconfinement phase transition in nuclear collisions
The (3+1)-dimensional ideal hydrodynamics is used to simulate collisions of
gold nuclei with bombarding energies from 1 to 160 GeV per nucleon. The initial
state is represented by two cold Lorentz-boosted nuclei. Two equations of
state: with and without the deconfinement phase transition are used. We have
investigated dynamical trajectories of compressed baryon-rich matter as
functions of various thermodynamical variables. The parameters of collective
flow and hadronic spectra are calculated. It is shown that presence of the
deconfinement phase transition leads to increase of the elliptic flow and to
flattening of proton rapidity distributions.Comment: 11 pages, 6 figure
The initial state of ultra-relativistic heavy ion collision
A model for energy, pressure and flow velocity distributions at the beginning
of ultra-relativistic heavy ion collisions is presented, which can be used as
an initial condition for hydrodynamic calculations. Our model takes into
account baryon recoil for both target and projectile, arising from the
acceleration of partons in an effective field, produced in the collision. The
typical field strength (string tension) for RHIC energies is about 5-12 GeV/fm,
what allows us to talk about "string ropes". The results show that a QGP forms
a tilted disk, such that the direction of the largest pressure gradient stays
in the reaction plane, but deviates from both the beam and the usual transverse
flow directions. Such initial conditions may lead to the creation of "antiflow"
or "third flow component".Comment: 28 pages, 9 figures. The presentation has been changed considerably.
Some parts of the model have been reformulated, what led to modifications in
several equations: (20-38), Apps. A, B. All the figures have been changed
from 100 GeV/nucl initial energy to the achieved RHIC energy of 65 GeV/nucl.
The last subplots in the Figs. 3, 4, 5, 6 present E=T^{00} in the laboratory
frame now, instead of the energy density in the local rest frame, e, shown in
the initial version. We also added the App. C to clarify the transformation
from space-time to lightcone coordinates and bac
Recommended from our members
Progress toward an optimized hydrogen series hybrid engine
The design considerations and computational fluid dynamics (CFD) modeling of a high efficiency, low emissions, hydrogen-fueled engine for use as the prime mover of a series hybrid automobile is described. The series hybrid automobile uses the engine to generate electrical energy via a lightweight generator, the electrical energy is stored in a power peaking device (like a flywheel or ultracapacitor) and used as required to meet the tractive drive requirements (plus accessory loads) through an electrical motor. The engine/generator is stopped whenever the energy storage device is fully charged. Engine power output required was determined with a vehicle simulation code to be 15 to 20 kW steady state with peak output of 40 to 45 kW for hill climb. Combustion chamber and engine geometry were determined from a critical review of the hydrogen engine experiments in the literature combined with a simplified global engine model. Two different engine models are employed to guide engine design. The models are a simplified global engine performance model that relies strongly on correlations with literature data for heat transfer and friction losses, and a state-of-the-art CFD combustion model, KIVA-3, to elucidate fluid mechanics and combustion details through full three-dimensional modeling. Both intake and exhaust processes as well as hydrogen combustion chemistry and thermal NO{sub x} production are simulated. Ultimately, a comparison between the simulation and experimental results will lead to improved modeling and will give guidance to changes required in the next generation engine to achieve the goal of 45% brake thermal efficiency
Thermal photons as a measure for the rapidity dependence of the temperature
The rapidity distribution of thermal photons produced in Pb+Pb collisions at
CERN-SPS energies is calculated within scaling and three-fluid hydrodynamics.
It is shown that these scenarios lead to very different rapidity spectra. A
measurement of the rapidity dependence of photon radiation can give cleaner
insight into the reaction dynamics than pion spectra, especially into the
rapidity dependence of the temperature.Comment: 3 Figure
Hydrodynamical analysis of symmetric nucleus-nucleus collisions at CERN/SPS energies
We present a coherent theoretical study of ultrarelativistic heavy-ion data
obtained at the CERN/SPS by the NA35/NA49 Collaborations using 3+1-dimensional
relativistic hydrodynamics. We find excellent agreement with the rapidity
spectra of negative hadrons and protons and with the correlation measurements
in two experiments: at 200 and at 160 (preliminary
results). Within our model this implies that for () a
quark-gluon-plasma of initial volume 174 (24 ) with a lifetime 3.4
(1.5 ) was formed. It is found that the Bose-Einstein correlation
measurements do not determine the maximal effective radii of the hadron sources
because of the large contributions from resonance decay at small momenta. Also
within this study we present an NA49 acceptance corrected two-pion
Bose-Einstein correlation function in the invariant variable, .Comment: 21 pages, 11 Postscript figures (1 File, 775654 Bytes, has to be
requested for submission via e.mail from [email protected]
1+1 Dimensional Hydrodynamics for High-energy Heavy-ion Collisions
A 1+1 dimensional hydrodynamical model in the light-cone coordinates is used
to describe central heavy-ion collisions at ultrarelativistic bombarding
energies. Deviations from Bjorken's scaling are taken into account by choosing
finite-size profiles for the initial energy density. The sensitivity of fluid
dynamical evolution to the equation of state and the parameters of initial
state is investigated. Experimental constraints on the total energy of produced
particles are used to reduce the number of model parameters. Spectra of
secondary particles are calculated assuming that the transition from the
hydrodynamical stage to the collisionless expansion of matter occurs at a
certain freeze-out temperature. An important role of resonances in the
formation of observed hadronic spectra is demonstrated. The calculated rapidity
distributions of pions, kaons and antiprotons in central Au+Au collisions at
the c.m. energy 200 GeV per NN pair are compared with experimental data of the
BRAHMS Collaboration. Parameters of the initial state are reconstructed for
different choices of the equation of state. The best fit of these data is
obtained for a soft equation of state and Gaussian-like initial profiles of the
energy density, intermediate between the Landau and Bjorken limits.Comment: 43 pages, 27 figure
- …