131 research outputs found
Towards inclusive GIS in the Congo Basin: an exploration of digital map creation and an evaluation of map understanding by non-literate hunter-gatherers
Sustainable and socially just natural resource management is one of the fundamental development challenges humanity is facing today. Communities living in remote areas possess unique insights about their natural resources. While this knowledge is critical to climate change, it is difficult for them to engage in environmental protection. Geographic Information Science (GIS) plays a central role in resource management, as it is utilised in spatial decision making processes. However, the literature argues that its use is too challenging for marginalised communities. Working with indigenous hunter-gatherers in the Congo Basin without prior exposure to technology or maps, this research moves towards enabling them to become active stakeholders in decision making so that they understand how to capture environmental knowledge and gain power through ownership. (Participatory) GIS, Human Computer Interaction, Action Research and Citizen Science concepts are adapted to the local context to address the lack of mapping of these areas, and the increased understanding of if and how digital, high resolution orthographic maps incorporated in digital mapping tools can be understood by people with no prior exposure to maps and technology. Different set-ups of low-cost Unmanned Aerial Vehicles and consumer grade cameras were tested and evaluated for suitability to generate high-resolution maps in-situ for previously unmapped and disconnected contexts. Applying a computer log analysis approach to overcome local obstacles, three experiments were carried out to test whether the resulting aerial orthophotos are understood as a representation of familiar geographical landscapes. For each of the experiments, a bespoke app functioning without an internet connection was developed. The research shows that the majority of the 136 participants could find as well as edit known features on the map and all participating groups were able to utilise a map for a Treasure Hunt game. Additionally, a number of methodological amendments are proposed to allow standardised research methods to be applied in a context where usability experiments are significantly challenged
Supporting collaboration with non-literate forest communities in the congo-basin
Providing indigenous communities with ICT tools and methods
for collecting and sharing their Traditional Ecological
Knowledge is increasingly recognised as an avenue
for improvements in environmental governance and socialenvironmental
justice. In this paper we show how we carried
out a usability engineering effort in the “wild” context
of the Congolese rainforest – designing, evaluating and iteratively
improving novel collaborative data collection interfaces
for non-literate forest communities that can subsequently
be used to facilitate communication and information
sharing with logging companies. Working in this context
necessitates adopting a thoroughly flexible approach to the
design, development, introduction and evaluation of technology
and the modes of interaction it offers. We show that we
have improved participant accuracy from about 75% towards
95% and provide a set of guidelines for designing and evaluating
ICT solutions in “extreme circumstances” – which hold
lessons for CSCW, HCI and ICT4D practitioners dealing with
similar challenges
Ciência Cidadã Extrema: Uma Nova Abordagem
A conservação da biodiversidade é uma questão que tem preocupado o mundo todo. Nas últimas décadas, centenas de áreas protegidas foram criadas para assegurar a preservação da biodiversidade no planeta. Um grande número de áreas protegidas é habitado por comunidades que dependem do uso de seus recursos naturais não apenas para a sua sobrevivência, mas também para a sua reprodução social e cultural. Em muitos casos, as populações locais têm sido diretamente responsáveis pela gestão sustentável desses complexos ecossistemas por séculos. Iniciativas de Ciência Cidadã – entendida como a participação de amadores, voluntários e entusiastas em projetos científicos – têm envolvido o público na produção científica e em projetos de monitoramento da biodiversidade, mas têm limitado essa participação à coleta de dados, e têm normalmente ocorrido em locais afluentes, excluindo as populações não alfabetizadas ou letradas e que vivem em áreas remotas. Povos e comunidades tradicionais conhecem os aspectos ambientais das áreas por eles habitadas, o que pode ser benéfico para a gestão e o monitoramento bem-sucedidos da biodiversidade. Portanto, ao se tratar do monitoramento e da proteção da biodiversidade em áreas habitadas por populações humanas, o seu envolvimento é central e pode conduzir a um cenário onde todas as partes envolvidas se beneficiam. Extreme Citizen Science (ExCiteS) é um grupo de pesquisa interdisciplinar criado em 2011, na University College London, com a finalidade de avançar o atual conjunto de práticas da Ciência Cidadã. A ideia é permitir que qualquer comunidade, em qualquer lugar do mundo – desde grupos marginalizados que vivem nas periferias de áreas urbanas até grupos de caçadores e coletores da floresta amazônica –, comece um projeto de Ciência Cidadã para lidar com suas próprias questões. Este artigo apresenta os diversos aspectos que tornam a Ciência Cidadã “extrema” no trabalho do grupo ExCiteS, por meio da exposição de suas teorias, métodos e ferramentas, e dos estudos de caso atuais que envolvem comunidades tradicionais ao redor do mundo. Por fim, ressalta-se a maior preocupação do grupo, que é tornar a participação verdadeiramente efetiva, e sugere-se como iniciativas de monitoramento da biodiversidade podem ser realizadas de maneira colaborativa, trazendo benefícios a todos os atores envolvidos
Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds.
Crosslinking and the resultant changes in mechanical properties have been shown to influence cellular activity within collagen biomaterials. With this in mind, we sought to determine the effects of crosslinking on both the compressive modulus of collagen-glycosaminoglycan scaffolds and the activity of osteoblasts seeded within them. Dehydrothermal, 1-ethyl-3-3-dimethyl aminopropyl carbodiimide and glutaraldehyde crosslinking treatments were first investigated for their effect on the compressive modulus of the scaffolds. After this, the most promising treatments were used to study the effects of crosslinking on cellular attachment, proliferation, and infiltration. Our experiments have demonstrated that a wide range of scaffold compressive moduli can be attained by varying the parameters of the crosslinking treatments. 1-Ethyl-3-3-dimethyl aminopropyl carbodiimide and glutaraldehyde treatments produced the stiffest scaffolds (fourfold increase when compared to dehydrothermal crosslinking). When cells were seeded onto the scaffolds, the stiffest scaffolds also showed increased cell number and enhanced cellular distribution when compared to the other groups. Taken together, these results indicate that crosslinking can be used to produce collagen-glycosaminoglycan scaffolds with a range of compressive moduli, and that increased stiffness enhances cellular activity within the scaffolds
Introducing Sapelli: A mobile data collection platform for non-literate users
With this poster we announce the imminent release of Sapelli, a new mobile data collection and sharing platform designed with a particular focus on non-literate and illiterate users
Taking Participatory Citizen Science to Extremes
University College London's Extreme Citizen Science research group (UCL ExCiteS) is experimenting with ways to incorporate the most marginalized communities into participatory citizen science activities through which they can share their indigenous knowledge. The group works with communities at the extremes of the globalized world--both because of nonliteracy and the remote or forbidding environments they inhabit. These groups are the gatekeepers of some key environments on which the future health of the planet depend--from tropical forests to Arctic sea-ice. This article presents the methodologies and tools the group is developing to give these people a voice. This article is part of a special issue on pervasive analytics and citizen science
How can ICT assist socio-ecological resilience in the Arctic?
ExCiteS (Extreme Citizen Science) brings together scholars from diverse fields to develop and contribute to the guiding theories, tools and methodologies that will enable any community to start a Citizen Science project to deal with issues that concern them, regardless of their background or literacy level
Enzymatic depolymerization of alginate by two novel thermostable alginate lyases from Rhodothermus marinus
Alginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked β-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a β-elimination mechanism, to yield unsaturated 4-deoxy-L-erythro-hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L-erythro configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers. In this study, two alginate lyase genes, designated alyRm3 and alyRm4, from the marine thermophilic bacterium Rhodothermus marinus (strain MAT378), were cloned and expressed in Escherichia coli. The recombinant enzymes were characterized, and their substrate specificity and product structures determined. AlyRm3 (PL39) and AlyRm4 (PL17) are among the most thermophilic and thermostable alginate lyases described to date with temperature optimum of activity at ∼75 and 81°C, respectively. The pH optimum of activity of AlyRm3 is ∼5.5 and AlyRm4 at pH 6.5. Detailed NMR analysis of the incubation products demonstrated that AlyRm3 is an endolytic lyase, while AlyRm4 is an exolytic lyase, cleaving monomers from the non-reducing end of oligo/poly-alginates
The Bacillus subtilis Minimal Genome Compendium
To better understand cellular life, it is essential to decipher the contribution of individual components and their interactions. Minimal genomes are an important tool to investigate these interactions. Here, we provide a database of 105 fully annotated genomes of a series of strains with sequential deletion steps of the industrially relevant model bacterium Bacillus subtilis starting with the laboratory wild type strain B. subtilis 168 and ending with B. subtilis PG38, which lacks approximately 40% of the original genome. The annotation is supported by sequencing of key intermediate strains as well as integration of literature knowledge for the annotation of the deletion scars and their potential effects. The strain compendium presented here represents a comprehensive genome library of the entire MiniBacillus project. This resource will facilitate the more effective application of the different strains in basic science as well as in biotechnology
Enzymatic depolymerization of alginate by two novel thermostable alginate lyases from Rhodothermus marinus
Alginate (alginic acid) is a linear polysaccharide, wherein (1->4)-linked β-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1->4) glycosidic linkages between the monomers by a β-elimination mechanism, to yield unsaturated 4-deoxy-L-erythro-hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L-erythro configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers. In this study, two alginate lyase genes, designated alyRm3 and alyRm4, from the marine thermophilic bacterium Rhodothermus marinus (strain MAT378), were cloned and expressed in Escherichia coli. The recombinant enzymes were characterized, and their substrate specificity and product structures determined. AlyRm3 (PL39) and AlyRm4 (PL17) are among the most thermophilic and thermostable alginate lyases described to date with temperature optimum of activity at ∼75 and 81°C, respectively. The pH optimum of activity of AlyRm3 is ∼5.5 and AlyRm4 at pH 6.5. Detailed NMR analysis of the incubation products demonstrated that AlyRm3 is an endolytic lyase, while AlyRm4 is an exolytic lyase, cleaving monomers from the non-reducing end of oligo/poly-alginates.EU FP7BBIBlueBio Cofund consortiu
- …