284 research outputs found

    Elementary Excitations in Quantum Antiferromagnetic Chains: Dyons, Spinons and Breathers

    Full text link
    Considering experimental results obtained on three prototype compounds, TMMC, CsCoCl3 (or CsCoBr3) and Cu Benzoate, we discuss the importance of non-linear excitations in the physics of quantum (and classical) antiferromagnetic spin chains.Comment: Invited at the International Symposium on Cooperative Phenomena of Assembled Metal Complexes, November 15-17, 2001, Osaka, Japa

    Exact Analysis of ESR Shift in the Spin-1/2 Heisenberg Antiferromagnetic Chain

    Full text link
    A systematic perturbation theory is developed for the ESR shift and is applied to the spin-1/2 Heisenberg chain. Using the Bethe ansatz technique, we exactly analyze the resonance shift in the first order of perturbative expansion with respect to an anisotropic exchange interaction. Exact result for the whole range of temperature and magnetic field, as well as asymptotic behavior in the low-temperature limit are presented. The obtained g-shift strongly depends on magnetic fields at low temperature, showing a significant deviation from the previous classical result.Comment: 4 pages, 3 figures,to be published in Phys. Rev. Let

    Large-Scale Numerical Evidence for Bose Condensation in the S=1 Antiferromagnetic Chain in a Strong Field

    Full text link
    Using the recently proposed density matrix renormalization group technique we show that the magnons in the S=1 antiferromagnetic Heisenberg chain effectively behaves as bosons that condense at a critical field h_c.Comment: 12 pages, REVTEX 3.0, 3 postscript figures appended, UBCTP-93-00

    Neutron Scattering Study of Temperature-Concentration Phase Diagram of (Cu1-xMgx)GeO3

    Full text link
    In doped CuGeO3 systems, such as (Cu1-xZnx)GeO3 and Cu(Ge1-xSix)O3, the spin-Peierls (SP) ordering (T<Tsp) coexists with the antiferromagnetic (AF) phase (T<TN<Tsp). Tsp decreases while TN increases with increasing x in low doping region. For higher x, however, the SP state disappears and only the AF state remains. These features are common for all the doped CuGeO3 systems so far studied, indicating the existence of universal T-x phase diagram. Recently, Masuda et al. carried out comprehensive magnetic susceptibility (chi) measurements of (Cu1-xMgx)GeO3, in which doping concentration can be controlled significantly better than the Zn doped systems. They found that TN suddenly jumps from 3.43 to 3.98K at the critical concentration xc sim 0.023 and that a drop in chi corresponding to the SP ordering also disappears at x>xc. They thus concluded that there is a compositional phase boundary between two distinct magnetic phases. To clarify the nature of two phases, we performed neutron-scattering measurements on (Cu1-xMgx)GeO3 single crystals with various x. Analysis of the data at fixed temperature points as a function of doping concentration has revealed sudden changes of order parameters at the critical concentration xc=0.027 +- 0.001. At finite temperatures below TN, the drastic increase of the AF moment takes place at xc. The spin-Peierls order parameter delta associated with lattice dimerization shows a precipitous decrease at all temperature below Tsp. However, it goes to zero above xc only at the low temperature limit.Comment: 9 pages, 9 figure

    Anomalous magnetization process in frustrated spin ladders

    Full text link
    We study, at T=0, the anomalies in the magnetization curve of the S=1 two-leg ladder with frustrated interactions. We focus mainly on the existence of the M=\Ms/2 plateau, where \Ms is the saturation magnetization. We use analytical methods (degenerate perturbation theory and non-Abelian bosonization) as well as numerical methods (level spectroscopy and density matrix renormalization group), which lead to the consistent conclusion with each other. We also touch on the M=\Ms/4 and M=(3/4)\Ms plateaux and cusps.Comment: 4 pages, 7 figures (embedded), Conference paper (Highly Frustrated Magnetism 2003, 26-30th August 2003, Grenoble, France

    Theory of Low Temperature Electron Spin Resonance in Half-integer Spin Antiferromagnetic Chains

    Full text link
    A theory of low temperature (T) electron spin resonance (ESR) in half-integer spin antiferromagnetic chains is developed using field theory methods and avoiding previous approximations. It is compared to experiments on Cu benzoate. Power laws are predicted for the line-width broadening due to various types of anisotropy. At T -> 0, zero width absorption peaks occur in some cases. The second ESR peak in Cu benzoate, observed at T<.76K, is argued not to indicate Neel order as previously claimed, but to correspond to a sine-Gordon "breather" excitation.Comment: 4 pages, REVTEX, 3 PostScript figures embedded in tex
    • …
    corecore