6 research outputs found

    Classification of frontal cortex haemodynamic responses during cognitive tasks using wavelet transforms and machine learning algorithms

    Full text link
    Recent advances in neuroimaging demonstrate the potential of functional near-infrared spectroscopy (fNIRS) for use in brain-computer interfaces (BCIs). fNIRS uses light in the near-infrared range to measure brain surface haemoglobin concentrations and thus determine human neural activity. Our primary goal in this study is to analyse brain haemodynamic responses for application in a BCI. Specifically, we develop an efficient signal processing algorithm to extract important mental-task-relevant neural features and obtain the best possible classification performance. We recorded brain haemodynamic responses due to frontal cortex brain activity from nine subjects using a 19-channel fNIRS system. Our algorithm is based on continuous wavelet transforms (CWTs) for multi-scale decomposition and a soft thresholding algorithm for de-noising. We adopted three machine learning algorithms and compared their performance. Good performance can be achieved by using the de-noised wavelet coefficients as input features for the classifier. Moreover, the classifier performance varied depending on the type of mother wavelet used for wavelet decomposition. Our quantitative results showed that CWTs can be used efficiently to extract important brain haemodynamic features at multiple frequencies if an appropriate mother wavelet function is chosen. The best classification results were obtained by a specific combination of input feature type and classifier. © 2012 IPEM.

    NEURAL NETWORK CLASSIFICATION OF BRAIN HEMODYNAMIC RESPONSES FROM FOUR MENTAL TASKS

    Full text link
    We investigate subjects' brain hemodynamic activities during mental tasks using a nearinfrared spectroscopy. A wavelet and neural network-based methodology is presented for recognition of brain hemodynamic responses. The recognition is performed by a single layer neural network classifier according to a backpropagation algorithm with two error minimizing techniques. The performance of the classifier varied depending on the neural network model, but the performance was usually at least 90%. The classifier usually converged faster and attained a somewhat greater level of performance when an input was presented with only relevant features. The overall classification rate was higher than 94%. The study demonstrates the accurate classifiablity of human brain hemodynamic useful in various brain studies. © 2011 Copyright DGIST.

    Path planning algorithm using the values clustered by k-means

    Full text link
    Path planning has been studied focusing on finding the shortest paths or smallest movements. The previous methods, however, are not suitable for stable movements on real environments in which various dynamic obstacles exist. In this paper, we suggest a path planning algorithm that makes the movement of an autonomous robot easier in a dynamic environment. Our focus is based on finding optimal movements for mobile robot to keep going on a stable situation but not on finding shortest paths or smallest movements. The proposed algorithm is based on GA and uses kmeans cluster analysis algorithm to recognize the much more information of obstacles distribution in real-life space. Simulation results confirmed to have better performance and stability of the proposed algorithm. In order to validate our results, we compared with a previous algorithm based on grid maps-based algorithm for static obstacles and dynamic obstacles environment. © 2010 ISAROB

    Path planning algorithm using the values clustered by k-means

    Full text link
    Path planning has been studied focusing on finding the shortest paths or smallest movements. The previous methods, however, are not suitable for stable movements on real environments in which various dynamic obstacles exist. In this paper, we suggest a path planning algorithm that makes the movement of an autonomous robot easier in a dynamic environment. Our focus is based on finding optimal movements for mobile robot to keep going on a stable situation but not on finding shortest paths or smallest movements. The proposed algorithm is based on GA and uses kmeans cluster analysis algorithm to recognize the much more information of obstacles distribution in real-life space. Simulation results confirmed to have better performance and stability of the proposed algorithm. In order to validate our results, we compared with a previous algorithm based on grid maps-based algorithm for static obstacles and dynamic obstacles environment. © 2010 ISAROB
    corecore