223,298 research outputs found

    Momentum Space Integral Equations for Three Charged Particles: Diagonal Kernels

    Get PDF
    It has been a long-standing question whether momentum space integral equations of the Faddeev type are applicable to reactions of three charged particles, in particular above the three-body threshold. For, the presence of long-range Coulomb forces has been thought to give rise to such severe singularities in their kernels that the latter may lack the compactness property known to exist in the case of purely short-range interactions. Employing the rigorously equivalent formulation in terms of an effective-two-body theory we have proved in a preceding paper [Phys. Rev. C {\bf 61}, 064006 (2000)] that, for all energies, the nondiagonal kernels occurring in the integral equations which determine the transition amplitudes for all binary collision processes, possess on and off the energy shell only integrable singularities, provided all three particles have charges of the same sign, i.e., all Coulomb interactions are repulsive. In the present paper we prove that, for particles with charges of equal sign, the diagonal kernels, in contrast, possess one, but only one, nonintegrable singularity. The latter can, however, be isolated explicitly and dealt with in a well-defined manner. Taken together these results imply that modified integral equations can be formulated, with kernels that become compact after a few iterations. This concludes the proof that standard solution methods can be used for the calculation of all binary (i.e., (in-)elastic and rearrangement) amplitudes by means of momentum space integral equations of the effective-two-body type.Comment: 36 pages, 2 figures, accepted for publication in Phys. Rev.

    Hydrodynamic chains and a classification of their Poisson brackets

    Full text link
    Necessary and sufficient conditions for an existence of the Poisson brackets significantly simplify in the Liouville coordinates. The corresponding equations can be integrated. Thus, a description of local Hamiltonian structures is a first step in a description of integrable hydrodynamic chains. The concept of MM Poisson bracket is introduced. Several new Poisson brackets are presented

    The variation of the magnetic field of the Ap star HD~50169 over its 29 year rotation period

    Full text link
    Context. The Ap stars that rotate extremely slowly, with periods of decades to centuries, represent one of the keys to the understanding of the processes leading to the differentiation of stellar rotation. Aims. We characterise the variations of the magnetic field of the Ap star HD 50169 and derive constraints about its structure. Methods. We combine published measurements of the mean longitudinal field of HD 50169 with new determinations of this field moment from circular spectropolarimetry obtained at the 6-m telescope BTA of the Special Astrophysical Observatory of the Russian Academy of Sciences. For the mean magnetic field modulus , literature data are complemented by the analysis of ESO spectra, both newly acquired and from the archive. Radial velocities are also obtained from these spectra. Results. We present the first determination of the rotation period of HD 50169, Prot = (29.04+/-0.82) y. HD 50169 is currently the longest-period Ap star for which magnetic field measurements have been obtained over more than a full cycle. The variation curves of both and have a significant degree of anharmonicity, and there is a definite phase shift between their respective extrema. We confirm that HD 50169 is a wide spectroscopic binary, refine its orbital elements, and suggest that the secondary is probably a dwarf star of spectral type M. Conclusions. The shapes and mutual phase shifts of the derived magnetic variation curves unquestionably indicate that the magnetic field of HD 50169 is not symmetric about an axis passing through its centre. Overall, HD 50169 appears similar to the bulk of the long-period Ap stars.Comment: 10 pages, 3 figures, accepted for publication in A&

    Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves

    Full text link
    We study the long-time evolution of gravity waves on deep water exited by the stochastic external force concentrated in moderately small wave numbers. We numerically implement the primitive Euler equations for the potential flow of an ideal fluid with free surface written in canonical variables, using expansion of the Hamiltonian in powers of nonlinearity of up to fourth order terms. We show that due to nonlinear interaction processes a stationary energy spectrum close to kk7/2|k| \sim k^{-7/2} is formed. The observed spectrum can be interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of energy.Comment: 4 pages, 5 figure

    The evolution with temperature of magnetic polaron state in an antiferromagnetic chain with impurities

    Full text link
    The thermal behavior of a one-dimensional antiferromagnetic chain doped by donor impurities was analyzed. The ground state of such a chain corresponds to the formation of a set of ferromagnetically correlated regions localized near impurities (bound magnetic polarons). At finite temperatures, the magnetic structure of the chain was calculated simultaneously with the wave function of a conduction electron bound by an impurity. The calculations were performed using an approximate variational method and a Monte Carlo simulation. Both these methods give similar results. The analysis of the temperature dependence of correlation functions for neighboring local spins demonstrated that the ferromagnetic correlations inside a magnetic polaron remain significant even above the N\'eel temperature TNT_N implying rather high stability of the magnetic polaron state. In the case when the electron-impurity coupling energy VV is not too high (for VV lower that the electron hopping integral tt), the magnetic polaron could be depinned from impurity retaining its magnetic structure. Such a depinning occurs at temperatures of the order of TNT_N. At even higher temperatures (TtT \sim t) magnetic polarons disappear and the chain becomes completely disordered.Comment: 17 pages, 5 figures, RevTe

    Long-range behavior of the optical potential for the elastic scattering of charged composite particles

    Get PDF
    The asymptotic behavior of the optical potential, describing elastic scattering of a charged particle α\alpha off a bound state of two charged, or one charged and one neutral, particles at small momentum transfer Δα\Delta_{\alpha} or equivalently at large intercluster distance ρα\rho_{\alpha}, is investigated within the framework of the exact three-body theory. For the three-charged-particle Green function that occurs in the exact expression for the optical potential, a recently derived expression, which is appropriate for the asymptotic region under consideration, is used. We find that for arbitrary values of the energy parameter the non-static part of the optical potential behaves for Δα0\Delta_{\alpha} \rightarrow 0 as C1Δα+o(Δα)C_{1}\Delta_{\alpha} + o\,(\Delta_{\alpha}). From this we derive for the Fourier transform of its on-shell restriction for ρα\rho_{\alpha} \rightarrow \infty the behavior a/2ρα4+o(1/ρα4)-a/2\rho_{\alpha}^4 + o\,(1/\rho_{\alpha}^4), i.e., dipole or quadrupole terms do not occur in the coordinate-space asymptotics. This result corroborates the standard one, which is obtained by perturbative methods. The general, energy-dependent expression for the dynamic polarisability C1C_{1} is derived; on the energy shell it reduces to the conventional polarisability aa which is independent of the energy. We emphasize that the present derivation is {\em non-perturbative}, i.e., it does not make use of adiabatic or similar approximations, and is valid for energies {\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte

    Nonlinear lattice model of viscoelastic Mode III fracture

    Full text link
    We study the effect of general nonlinear force laws in viscoelastic lattice models of fracture, focusing on the existence and stability of steady-state Mode III cracks. We show that the hysteretic behavior at small driving is very sensitive to the smoothness of the force law. At large driving, we find a Hopf bifurcation to a straight crack whose velocity is periodic in time. The frequency of the unstable bifurcating mode depends on the smoothness of the potential, but is very close to an exact period-doubling instability. Slightly above the onset of the instability, the system settles into a exactly period-doubled state, presumably connected to the aforementioned bifurcation structure. We explicitly solve for this new state and map out its velocity-driving relation

    Closed form solution for a double quantum well using Gr\"obner basis

    Full text link
    Analytical expressions for spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and effective masses are different. This was achieved by Gr\"obner basis algorithm which allows to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.Comment: 4 figures, Mathematica full calculation noteboo

    Dependences of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties

    Full text link
    The Casimir-Polder and van der Waals interactions between an atom and a flat cavity wall are investigated under the influence of real conditions including the dynamic polarizability of the atom, actual conductivity of the wall material and nonzero temperature of the wall. The cases of different atoms near metal and dielectric walls are considered. It is shown that to obtain accurate results for the atom-wall interaction at short separations, one should use the complete tabulated optical data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. At relatively large separations in the case of a metal wall, one may use the plasma model dielectric function to describe the dielectric properties of wall material. The obtained results are important for the theoretical interpretation of experiments on quantum reflection and Bose-Einstein condensation.Comment: 5 pages, 1 figure, iopart.cls is used, to appear in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    An outburst from a massive star 40 days before a supernova explosion

    Get PDF
    Various lines of evidence suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as a supernova. Interestingly, several models predict such pre-explosion outbursts. Establishing a causal connection between these mass-loss episodes and the final supernova explosion will provide a novel way to study pre-supernova massive-star evolution. Here we report on observations of a remarkable mass-loss event detected 40 days prior to the explosion of the Type IIn supernova SN 2010mc (PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6x10^47 erg of energy, and releasing about 0.01 Solar mass at typical velocities of 2000 km/s. We show that the temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model and disfavor alternative suggestions.Comment: Nature 494, 65, including supplementary informatio
    corecore