1,349 research outputs found

    Equilibrium spherically curved 2D Lennard-Jones systems

    Get PDF
    To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N<800) equilibrium configurations are traced as a function of the curvature radius R. Sharp jumps for tiny changes in R between trajectories with major differences in topological structure correspond to avalanche-like transitions. For a typical case, N=25, equilibrium configurations fall on smooth trajectories in state space which can be traced in the E-R plane. The trajectories show-up with local energy minima, from which growth in N at steady curvature can develop.Comment: 10 pages, 2 figures, to be published in Journal of Chemical Physic

    Rapidly solidified titanium alloys by melt overflow

    Get PDF
    A pilot plant scale furnace was designed and constructed for casting titanium alloy strips. The furnace combines plasma arc skull melting techniques with melt overflow rapid solidification technology. A mathematical model of the melting and casting process was developed. The furnace cast strip of a suitable length and width for use with honeycomb structures. Titanium alloys Ti-6Al-4V and Ti-14Al-21 Nb were successfully cast into strips. The strips were evaluated by optical metallography, microhardness measurements, chemical analysis, and cold rolling

    On the role of confinement on solidification in pure materials and binary alloys

    Full text link
    We use a phase-field model to study the effect of confinement on dendritic growth, in a pure material solidifying in an undercooled melt, and in the directional solidification of a dilute binary alloy. Specifically, we observe the effect of varying the vertical domain extent (δ\delta) on tip selection, by quantifying the dendrite tip velocity and curvature as a function of δ\delta, and other process parameters. As δ\delta decreases, we find that the operating state of the dendrite tips becomes significantly affected by the presence of finite boundaries. For particular boundary conditions, we observe a switching of the growth state from 3-D to 2-D at very small δ\delta, in both the pure material and alloy. We demonstrate that results from the alloy model compare favorably with those from an experimental study investigating this effect.Comment: 13 pages, 9 figures, 3 table

    Nonclassicality of pure two-qutrit entangled states

    Full text link
    We report an exhaustive numerical analysis of violations of local realism by two qutrits in all possible pure entangled states. In Bell type experiments we allow any pairs of local unitary U(3) transformations to define the measurement bases. Surprisingly, Schmidt rank-2 states, resembling pairs of maximally entangled qubits, lead to the most noise-robust violations of local realism. The phenomenon seems to be even more pronounced for four and five dimensional systems, for which we tested a few interesting examples.Comment: 6 pages, journal versio

    Subtropical Real Root Finding

    Get PDF
    We describe a new incomplete but terminating method for real root finding for large multivariate polynomials. We take an abstract view of the polynomial as the set of exponent vectors associated with sign information on the coefficients. Then we employ linear programming to heuristically find roots. There is a specialized variant for roots with exclusively positive coordinates, which is of considerable interest for applications in chemistry and systems biology. An implementation of our method combining the computer algebra system Reduce with the linear programming solver Gurobi has been successfully applied to input data originating from established mathematical models used in these areas. We have solved several hundred problems with up to more than 800000 monomials in up to 10 variables with degrees up to 12. Our method has failed due to its incompleteness in less than 8 percent of the cases

    Phase Field Model for Three-Dimensional Dendritic Growth with Fluid Flow

    Full text link
    We study the effect of fluid flow on three-dimensional (3D) dendrite growth using a phase-field model on an adaptive finite element grid. In order to simulate 3D fluid flow, we use an averaging method for the flow problem coupled to the phase-field method and the Semi-Implicit Approximated Projection Method (SIAPM). We describe a parallel implementation for the algorithm, using Charm++ FEM framework, and demonstrate its efficiency. We introduce an improved method for extracting dendrite tip position and tip radius, facilitating accurate comparison to theory. We benchmark our results for two-dimensional (2D) dendrite growth with solvability theory and previous results, finding them to be in good agreement. The physics of dendritic growth with fluid flow in three dimensions is very different from that in two dimensions, and we discuss the origin of this behavior

    On the Axiomatics of the 5-dimensional Projective Unified Field Theory of Schmutzer

    Get PDF
    For more than 40 years E.Schmutzer has developed a new approach to the (5-dimensional) projective relativistic theory which he later called Projective Unified Field Theory (PUFT). In the present paper we introduce a new axiomatics for Schmutzer's theory. By means of this axiomatics we can give a new geometrical interpretation of the physical concept of the PUFT.Comment: 32 pages, 1 figure, LaTeX 2e, will be submitted to Genaral Relativity and Gravitatio

    Duality, thermodynamics, and the linear programming problem in constraint-based models of metabolism

    Full text link
    It is shown that the dual to the linear programming problem that arises in constraint-based models of metabolism can be given a thermodynamic interpretation in which the shadow prices are chemical potential analogues, and the objective is to minimise free energy consumption given a free energy drain corresponding to growth. The interpretation is distinct from conventional non-equilibrium thermodynamics, although it does satisfy a minimum entropy production principle. It can be used to motivate extensions of constraint-based modelling, for example to microbial ecosystems.Comment: 4 pages, 2 figures, 1 table, RevTeX 4, final accepted versio

    On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms

    Get PDF
    We give a lower bound on the iteration complexity of a natural class of Lagrangean-relaxation algorithms for approximately solving packing/covering linear programs. We show that, given an input with mm random 0/1-constraints on nn variables, with high probability, any such algorithm requires Ω(ρlog(m)/ϵ2)\Omega(\rho \log(m)/\epsilon^2) iterations to compute a (1+ϵ)(1+\epsilon)-approximate solution, where ρ\rho is the width of the input. The bound is tight for a range of the parameters (m,n,ρ,ϵ)(m,n,\rho,\epsilon). The algorithms in the class include Dantzig-Wolfe decomposition, Benders' decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988] and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy argument to show an analogous lower bound on the support size of (1+ϵ)(1+\epsilon)-approximate mixed strategies for random two-player zero-sum 0/1-matrix games

    Polyhedral Analysis using Parametric Objectives

    Get PDF
    The abstract domain of polyhedra lies at the heart of many program analysis techniques. However, its operations can be expensive, precluding their application to polyhedra that involve many variables. This paper describes a new approach to computing polyhedral domain operations. The core of this approach is an algorithm to calculate variable elimination (projection) based on parametric linear programming. The algorithm enumerates only non-redundant inequalities of the projection space, hence permits anytime approximation of the output
    corecore