547 research outputs found

    KemptenCity - Semantic Segmentation of Urban Areas for Simulation

    Get PDF
    Autonomous driving and traffic flow simulation requires a realistic and accurate representation of the environment. Therefore, this research focuses on the semantic segmentation of aerial images for simulation purposes. Initially, a dataset was created based on true orthophotos from 2019 and Kempten’s street cadaster, with true orthophotos being fully rectified aerial images. The chosen classes were oriented towards the subsequent conversion and usage in simulation. The proposed labeling workflow used cadaster data and demonstrated significant time efficiency compared to state-of-the-art datasets. Subsequently, a neural network was implemented that was trained and tested on the dataset. In addition, the network was also trained only on the lane markings to compare the network’s performance. Both cases demonstrated excellent segmentation results. The generalizability was then tested on true orthophotos from 2021. The results indicated a solid generalizability, but still needs to be improved. Finally, the aerial information was converted into a 3D environment, that can be used in simulations. Our results confirm the usage of aerial imagery and street cadaster data as a basis for the simulations

    Unadulterated spectral function of low energy quasiparticles: Bi-2212, nodal direction

    Get PDF
    Fitting the momentum distribution photoemission spectra to the Voigt profile appears to be a robust procedure to purify the interaction effects from the experimental resolution. In application to Bi-2212 high-Tc cuprates, the procedure reveals the true scattering rate at low binding energies and temperatures, and, consequently, the true value of the elastic scattering. Reaching the minimal value ~ 16 meV, the elastic scattering does not reveal a systematic dependence on doping level, but is rather sensitive to impurity concentration, and can be explained by the forward scattering on out-of-plane impurities. The inelastic scattering is found to form well-defined quasiparticles with the quadratic and cubic energy dependence of the scattering rate above and below Tc, respectively. The observed energy-temperature asymmetry of the scattering rate is also discussed.Comment: 4 revtex pages, 4 figure

    Relationships between Larval and Juvenile Abundance of Winter-Spawned Fishes in North Carolina, USA

    Get PDF
    We analyzed the relationships between the larval and juvenile abundances of selected estuarine-dependent fishes that spawn during the winter in continental shelf waters of the U.S. Atlantic coast. Six species were included in the analysis based on their ecological and economic importance and relative abundance in available surveys: spot Leiostomus xanthurus, pinfish Lagodon rhomboides, southern flounder Paralichthys lethostigma, summer flounder Paralichthys dentatus, Atlantic croaker Micropogonias undulatus, and Atlantic menhaden Brevoortia tyrannus. Cross-correlation analysis was used to examine the relationships between the larval and juvenile abundances within species. Tests of synchrony across species were used to find similarities in recruitment dynamics for species with similar winter shelf-spawning life-history strategies. Positive correlations were found between the larval and juvenile abundances for three of the six selected species (spot, pinfish, and southern flounder). These three species have similar geographic ranges that primarily lie south of Cape Hatteras. There were no significant correlations between the larval and juvenile abundances for the other three species (summer flounder, Atlantic croaker, and Atlantic menhaden); we suggest several factors that could account for the lack of a relationship. Synchrony was found among the three southern species within both the larval and juvenile abundance time series. These results provide support for using larval ingress measures as indices of abundance for these and other species with similar geographic ranges and winter shelf-spawning life-history strategies

    Feeding ecology of Atlantic bluefin tuna (Thunnus thynnus) in North Carolina: diet, daily ration, and consumption of Atlantic menhaden (Brevoortia tyrannus)

    Get PDF
    Diet, gastric evacuation rates, daily ration, and population-level prey demand of bluefin tuna (Thunnus thynnus) were estimated in the continental shelf waters off North Carolina. Bluefin tuna stomachs were collected from commercial fishermen during the late fall and winter months of 2003–04, 2004–05, and 2005–06. Diel patterns in mean gut fullness values were used to estimate gastric evacuation rates. Daily ration determined from mean gut fullness values and gastric evacuation rates was used, along with bluefin tuna population size and residency times, to estimate population-level consumption by bluefin tuna on Atlantic menhaden (Brevoortia tyrannus). Bluefin tuna diet (n= 448) was dominated by Atlantic menhaden; other teleosts, portunid crabs, and squid were of mostly minor importance. The time required to empty the stomach after peak gut fullness was estimated to be ~20 hours. Daily ration estimates were approximately 2% of body weight per day. At current western Atlantic population levels, bluefin tuna predation on Atlantic menhaden is minimal compared to predation by other known predators and the numbers taken in commercial harvest. Bluefin tuna appear to occupy coastal waters in North Carolina during winter to prey upon Atlantic menhaden. Thus, changes in the Atlantic menhaden stock status or distribution would alter the winter foraging locations of bluefi

    Environmental Toxicology TESTS OF BIOACCUMULATION MODELS FOR POLYCHLORINATED BIPHENYL COMPOUNDS: A STUDY OF YOUNG-OF-THE-YEAR BLUEFISH IN THE HUDSON RIVER ESTUARY, USA

    Get PDF
    Abstract-A field-based study regarding uptake of polychlorinated biphenyl compounds (PCBs) by young-of-the-year (YOY) bluefish (Pomatomus saltatrix) was initiated to test a steady-state model of bioaccumulation and trophic transfer in a rapidly growing fish. Determination of prey composition as well as size-dependent growth and specific consumption rates for YOY bluefish from separate field and laboratory studies enabled the input of these species-specific parameters into the model. Furthermore, the time and duration of the exposure of YOY bluefish to dissolved PCBs from a well-characterized system (Hudson River, USA) was well known. Patterns of accumulation of individual PCB congeners differed relative to the accumulation of total PCBs, with the greatest net accumulation occurring for the higher-molecular-weight congeners. Comparison of lipid-normalized bioaccumulation factors (BAFs) with the octanol-water partition coefficients of individual PCB congeners revealed bluefish to be above the BAFs predicted by lipid-based equilibrium partitioning, suggesting that uptake from food is an important source of PCBs in YOY bluefish. Comparison of measured BAFs with values predicted by a steady-state, food-chain model showed good first-order agreement

    Origin of complex crystal structures of elements at pressure

    Full text link
    We present a unifying theory for the observed complex structures of the sp-bonded elements under pressure based on nearly free electron picture (NFE). In the intermediate pressure regime the dominant contribution to crystal structure arises from Fermi-surface Brillouin zone (FSBZ) interactions - structures which allow this are favoured. This simple theory explains the observed crystal structures, transport properties, the evolution of internal and unit cell parameters with pressure. We illustrate it with experimental data for these elements and ab initio calculation for Li.Comment: 4 pages 5 figure

    Effect of granularity on the insulator-superconductor transition in ultrathin Bi films

    Full text link
    We have studied the insulator-superconductor transition (IST) by tuning the thickness in quench-condensed BiBi films. The resistive transitions of the superconducting films are smooth and can be considered to represent "homogeneous" films. The observation of an IST very close to the quantum resistance for pairs, RNh/4e2R_{\Box}^N \sim h/4e^2 on several substrates supports this idea. The relevant length scales here are the localization length, and the coherence length. However, at the transition, the localization length is much higher than the superconducting coherence length, contrary to expectation for a "homogeneous" transition. This suggests the invalidity of a purely fermionic model for the transition. Furthermore, the current-voltage characteristics of the superconducting films are hysteretic, and show the films to be granular. The relevant energy scales here are the Josephson coupling energy and the charging energy. However, Josephson coupling energies (EJE_J) and the charging energies (EcE_c) at the IST, they are found to obey the relation EJ<EcE_J < E_c. This is again contrary to expectation, for the IST in a granular or inhomogeneous, system. Hence, a purely bosonic picture of the transition is also inconsistent with our observations. We conclude that the IST observed in our experiments may be either an intermediate case between the fermioinc and bosonic mechanisms, or in a regime of charge and vortex dynamics for which a quantitative analysis has not yet been done.Comment: accepted in Physical Review

    Artificial structure selection by economically important reef fishes at North Carolina artificial reefs

    Get PDF
    Artificial reefs can play an important role in marine fisheries management by supplementing or enhancing natural habitats. Despite their increased use in recent years, the choice of structures used at artificial reefs remains largely haphazard due to the lack of information on reef structure performance. Few studies have examined the use of different artificial reef structures by individual fish. From 2021-2022, we acoustically tagged 72 black sea bass (Centropristis striata), 34 gag (Mycteroperca mircrolepis), 27 greater amberjack (Seriola dumerili), nine almaco jack (S. rivoliana), and eight red snapper (Lutjanus campechanus) on four artificial reef complexes near Cape Lookout, North Carolina, U.S. Available artificial reef structures consisted of materials of various sizes and heights made of concrete and metal. We tracked tagged fish using a fine-scale positioning system for ~100 days. Black sea bass exhibited high site fidelity to the artificial structure where we caught them, rarely moving away from that structure. The limited movement resulted in low transition probabilities; we conclude that black sea bass do not select for particular artificial structures. Gag and red snapper moved greater distances away from artificial structures and routinely moved between them. Greater amberjack and almaco jack moved the most within the complexes displaying circling behavior around individual structures and were the only species that regularly moved off the artificial reef complexes. Greater amberjack movements away from artificial sites were most commonly directed to surrounding shipwrecks. Whereas gag, red snapper, almaco jack, and greater amberjack used all available structures, they consistently selected for high relief structures, such as vessels, more than other structures. These results will be useful to managers charged with decisions on what types of structures to place at artificial reef complexes to supplement or enhance habitat for economically important fishes

    Assembling the puzzle of superconducting elements: A Review

    Full text link
    Superconductivity in the simple elements is of both technological relevance and fundamental scientific interest in the investigation of superconductivity phenomena. Recent advances in the instrumentation of physics under pressure have enabled the observation of superconductivity in many elements not previously known to superconduct, and at steadily increasing temperatures. This article offers a review of the state of the art in the superconductivity of elements, highlighting underlying correlations and general trends.Comment: Review, 10 pages, 11 figures, 97 references; to appear in Superc. Sci. Techno

    Spectroscopic evidence for an all-ferrous [4Fe–4S]0 cluster in the superreduced activator of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans

    Get PDF
    The key enzyme of the fermentation of glutamate by Acidaminococcus fermentans, 2-hydroxyglutarylcoenzyme A dehydratase, catalyzes the reversible syn-elimination of water from (R)-2-hydroxyglutaryl-coenzyme A, resulting in (E)-glutaconylcoenzyme A. The dehydratase system consists of two oxygen-sensitive protein components, the activator (HgdC) and the actual dehydratase (HgdAB). Previous biochemical and spectroscopic studies revealed that the reduced [4Fe–4S]+ cluster containing activator transfers one electron to the dehydratase driven by ATP hydrolysis, which activates the enzyme. With a tenfold excess of titanium(III) citrate at pH 8.0 the activator can be further reduced, yielding about 50% of a superreduced [4Fe–4S]0 cluster in the all-ferrous state. This is inferred from the appearance of a new Mössbauer spectrum with parameters δ = 0.65 mm/s and ΔEQ = 1.51–2.19 mm/s at 140 K, which are typical of Fe(II)S4 sites. Parallel-mode electron paramagnetic resonance (EPR) spectroscopy performed at temperatures between 3 and 20 K showed two sharp signals at g = 16 and 12, indicating an integer-spin system. The X-band EPR spectra and magnetic Mössbauer spectra could be consistently simulated by adopting a total spin St = 4 for the all-ferrous cluster with weak zero-field splitting parameters D = −0.66 cm−1 and E/D = 0.17. The superreduced cluster has apparent spectroscopic similarities with the corresponding [4Fe–4S]0 cluster described for the nitrogenase Fe-protein, but in detail their properties differ. While the all-ferrous Fe-protein is capable of transferring electrons to the MoFe-protein for dinitrogen reduction, a similar physiological role is elusive for the superreduced activator. This finding supports our model that only one-electron transfer steps are involved in dehydratase catalysis. Nevertheless we discuss a common basic mechanism of the two diverse systems, which are so far the only described examples of the all-ferrous [4Fe–4S]0 cluster found in biology
    corecore