33 research outputs found

    Estimation of age at death: examination of variation in cortical bone histology within the human clavicle

    Get PDF
    Background: Continuously, numerous human remains of unknown identity are revealed all over the world. One of the elements of the identification process may be a proper assessment of a histological section of bone fragments in order to answer questions related to the age of the subject. The aim of the study was to define an optimum bone fragment to obtain samples for histological examination. Materials and methods: The study material consisted of fragments of shafts of left clavicles taken from 39 males and 25 females (aged 22–86). The clavicles came from autopsies conducted between 2005 and 2011 at the Department of Forensic Medicine of Poznan and the Bialystok Medical University. The following were taken into account while estimating the age of the bone remains: clavicle length (CL), clavicle width (CW), clavicle thickness (CT), number of osteons in the field of vision (ON), number of osteons with the Haversian canal of more than 70 μm (HC > 70 μm), average diameter of the Haversian canals (avg. ØHC), area occupied by interstitial lamellae (ILA %), area occupied by osteons (OA %), area occupied by fragments-remnants of osteons remain as irregular arcs of lamellar fragments (OFA %), average thickness of outer circumferential lamellae (avg. OCL, μm), the relation of osteons with the Haversian canal of more than 70 μm in diameter to the total number of osteons (HC > 70 μm, %), at p < 0.00001. The age of the bone remains was estimated using univariate linear regression function. Results: It was determined that the best place for sampling the osseous tissue for the analysis was the shaft of the clavicle. It was stated than the number of osteons with a large diameter increased with age. The relation of osteons with the Haversian canal of more than 70 μm in diameter to the total number of osteons (HC > 70 μm, %). The level of statistical significant was p < 0.00001. All analysed microscopic features of the osseous tissue showed significant statistical changes occurring with age. Conclusions: The exact method for preparing osseous tissue for a microscopic analysis to determine the age of the remains is the preparation of histological sections, as the structure of the osseous tissue does not change while processing the material and the time of preparations is relatively short (7–8 days). The best predictors of age with the use of the function of univariate linear regression were: the diameter of Haversian canal, the number of osteons with Haversian canal of more than 70 μm in diameter, the relation of osteons with Haversian canal bigger than 70 μm in diameter to the total number of osteons as well as fragments of secondary osteons

    Krater Ngorongoro największą atrakcją geoturystyczną ryftu Gregory'ego (północna Tanzania, Afryka) - dziedzictwo geologiczne

    No full text
    The Ngorongoro Crater is the largest unflooded and not destroyed collapse volcanic caldera of the shield volcano on Earth. It attracts many visitors each year not only because of the undoubted wealth of the wildlife and breathtaking views, but also due to the geotouristic attractiveness of this definite location. The Crater is in fact a specific example of geological processes, relevant to the development of planet Earth. In a relatively small area one can observe rocks of different types and ages: Precambrian igneous and metamorphic rocks, volcanic rocks formed in the Pliocene, Pleistocene, and even nowadays, as well as sedimentary rocks, up to those currently forming within the caldera floor. The origin and development of the Ngorongoro volcano, and lately caldera, is closely related to the activity ofrifting processes occurring along the Gregory Rift, belonging to the East African Rift System. It represents one of the three arms of the Afar triple junction associated with the located here hotspot. Due to the geotouristic attractiveness, as well as a richness of living nature and archaeological sites with discoveries of our ancestors, which illustrate an important stage in the history of mankind, the area of the Ngorongoro Crater was designated a UNESCO World Cultural and Natural Heritage Site.Krater Ngorongoro to największa tak dobrze zachowana (niezalana wodą i niezniszczona) kaldera zapadliskowa wygasłego wulkanu tarczowego na Ziemi. Przyciąga ona każdego roku nieprzebrane rzesze turystów nie tylko ze względu na zapierające dech w piersiach widoki oraz niewątpliwe bogactwo flory, a w szczególności fauny, lecz również z uwagi na swą wyjątkową atrakcyjność geoturystyczną. Krater ten stanowi bowiem szczególny przykład wyjątkowo istotnych dla rozwoju Ziemi procesów geologicznych. Na stosunkowo niewielkiej powierzchni można obserwować bardzo różnorodne skały: magmowe i metamorficzne wieku prekambryjskiego, wulkaniczne powstałe w pliocenie, plejstocenie i w czasach współczesnych, a także różnowiekowe utwory osadowe. Powstanie i rozwój wulkanu, a następnie kaldery Ngorongoro jest ściśle związany z aktywnością procesów prowadzących do rozwoju ryftu Gregory'ego, stanowiącego segment wschodnioafrykańskiego systemu ryftowego. Należy on do jednego z trzech ramion trójzłącza Afaru, ściśle genetycznie związanego z ewolucją znajdującej się na tym obszarze plamy gorąca. Z uwagi na swą wyjątkową atrakcyjność geoturystyczną oraz bogactwo i różnorodność przyrody ożywionej, jak też unikatowe uwarunkowania antropogeniczne (archeologiczne odkrycia szczątków i śladów bytności naszych przodków dokumentujące ważny etap historii ludzkości) rejon ten został wpisany na Listę Światowego Dziedzictwa Kulturowego i Przyrodniczego UNESCO

    Fault activity in the Rio Colca Valley in the Pinchollo-Maca Area, Central Andes, Southern Peru

    No full text
    Praca prezentuje wyniki badań strukturalnych sieci uskoków i spękań w utworach mezozoiku i czwartorzędu przeprowadzonych w Dolinie Rio Colca w okolicy Pinchollo-Lari-Maca (Andy Peruwiańskie). Z przeprowadzonych badań wynika, że Dolina Rio Colca ma założenia tektoniczne i wykorzystuje niemal wszystkie występujące na analizowanym terenie zespoły nieciągłości, ze szczególnym uwzględnieniem uskoków o przebiegu WNW-ESE, NE-SW oraz rzadziej - W-E. Większość stwierdzonych uskoków przemieszcza zarówno utwory mezozoiczne i mioceńskie jak i czwartorzędowe, co świadczy o ich współczesnej aktywności. W pokrywających dużą część terenu czwartorzędowych koluwiach zaznaczają się kierunki niemal wszystkich uskoków stwierdzonych w utworach mezozoicznych. Współczesna aktywność uskoków spowodowała utworzenie się na powierzchni terenu wyraźnych pierwotnych skarp uskokowych, które nie uległy dotychczas procesom denudacyjnym.Fault/fracture network within Mesozoic and Quaternary formations has been studied in Rio Colca Valley in Pinchollo - Lari - Maca area (Peruvian Andes). The results show structural framework of the Rio Colca Valley based on nearly all tectonic discontinuities observed in the area; mostly on WNW-ESE and NE-SW faults, and on few W-E faults. Displacements of Mesozoic, Miocene and Quaternary formations observed on nearly all faults in the study area provide evidence for recent tectonic activity. Most of the faults in the Mesozoic bedrock continue in Quaternary colluvial deposits. Recent faulting led to development of a system of distinct, primary scarps and land cracks on the surface, which have not been eroded yet

    Structure of the Precambrian basement of the eastern part of the Upper Silesian block (Brunovistulicum)

    No full text
    Two large, regional tectonic units, represented by Małopolska and Brunovistulicum blocks (terrains) can be distinguished in the southern Poland. The Cracow–Lubliniec fault zone forms their border. They vary both in the structures of the Precambrian basement and the Paleozoic rock cover, which shows different paleogeographic-facies and paleotectonic development. They are separated from the neighboring tectonic units by immense deep fault zones. Archean and Early Proterozoic metamorphic rocks within the Rzeszotary horst (2.6–2.8 and 2.0 Ga) are the oldest formations building the Brunovistulicum basement. Farther to the west, Precambrian and Ediacaran anchimetamorphic siliclastics can be observed. Cadomian-Precambrian rocks (640–545 Ma), which outcrop only near Brno, occur south and west of them. In the western part of the Brunovisitulicum (theWestern Sudetes) Variscan orthogneiss occurs. The age of its protholite varies vastly; from approximately 1020 Ma through 680–570 Ma to approximately 520–500 Ma. Precambrian basement of the Brunovistulicum is heterogenic. Within the area of Poland, it is formed by two fragments of the crust, represented by Karelian and Early Karelian rocks of the Rzeszotary horst and Cadomian crystalline and anchimetamorphic rocks occurring west of Rzeszotary. Between them, two vast, connected together, magnetic maxima in the vicinity of Tychy and Jordanów can be observed in a magnetic field image delta Z. The origin of those anomalies is related to the occurrence of gabbro, diabase and/or ultrabasite (ophiolite) rocks. Referring to the earlier concepts, it may be currently assumed that the anomaly axis Tychy–Jordanów determines the course of the contact zone (ophiolite suture zone) between the two fragments of the crust of different ages, building the basement of Brunovistulicum: the Archean - Lower Proterozoic (Karelian) and the Upper Proterozoic (Cadomian) formations

    Comparison of fold deformation sequences in the northern and southern metamorphic cover of the Karkonosze granitoids

    No full text
    We applied the detailed structural analysis to 394 outcrops in the southern and northern metamorphic cover of the Karkonosze Intrusion. We recognised five generations of fold structures: F1 -poorly preserved tight intrafoliation folds; F2 - the most common generation, with the whole variety of fold geometries, W-E and WSW-ENE-oriented fold axes in the northern contact zone, and W-E and WNW-ESE-oriented fold axes in the southern contact zone; F3 - chevron folds; F4 - kinkfolds observed only in the Stara Kamienica schist belt; and F5 - wide open folds, locally transformed into monoclinal kinkfolds, probably formed during the Variscan intrusion of the Karkonosze pluton. Similarity observed in the structural style in the northern and southern contact zones prove that these lithostratigraphic units had formed a single unit - the Izera-Kowary Unit - and had undergone the same deformational stages before the Karkonosze granitoid intrusion took place

    Krater Ngorongoro największą atrakcją geoturystyczną ryftu Gregory'ego (północna Tanzania, Afryka) - waloryzacja geoturystyczną, zagospodarowanie turystyczne i zagrożenia

    No full text
    The Ngorongoro Crater, as the largest unflooded and not destroyed volcanic caldera on Earth, is one of the major geotouristic attractions of East Africa. Unique on the global scale richness of wildlife, exotic cultures of indigenous people and specific position of the Crater within the East African Rift System, each year attracts thousands of tourists eager for an unforgetable experience. Their number continues to growfrom year to year, reaching the value of nearly half a million visitors within the last few years. Constantly developing tourism industry, besides many advantages, also causes a number of risks, both for the world of living nature and inanimate nature objects, as well as for the local population. In 1959, recognizing the unique and special touristic and geoeducative values of this location, the Ngorongoro Conservation Area (NCA) was established. Almost twenty years later, in 1978, the area was included in the UNESCO World Cultural and Natural Heritage List. Furthermore, within the Ngorongoro Conservation Area as well as in its immediate neighborhood there are many objects that also deserve to be called geotouristic attractions, such as: Olduvai Gorge, Crater Olmoti, Crater Empakai and Oldoinyo Lengai volcano. In a relatively short distance from the Crater also the highest mountain in Africa - the Kilimanjaro volcano and the biggest active volcano of this continent, Meru, are located.Krater Ngorongoro, jako największa niezalana i niezniszczona kaldera wulkaniczna na Ziemi, stanowi jedną z najważniejszych atrakcji geoturystycznych Afryki Wschodniej. Wyjątkowe bogactwo przyrody ożywionej, egzotyka kultury ludności autochtonicznej oraz unikalna pozycja krateru w obrębie wschodnioafrykańskiego systemu ryftowego, przyciąga każdego roku ogromne rzesze turystów żądnych niezapomnianych przeżyć. Ich liczba każdego roku stale rośnie, osiągając w ostatnim okresie prawie pól miliona odwiedzających. Wzmożony i stale nasilający się ruch turystyczny ma wiele zalet, lecz powoduje również szereg zagrożeń, zarówno dla świata przyrody ożywionej, jak i nieożywionej, a także dla ludności lokalnej. W roku 1959, w uznaniu szczególnych walorów turystycznych i geoedukacyjnych krateru i jego okolicy ustanowiono tam Obszar Chroniony Ngorongoro (NCA). W roku 1978 obszar ten wpisano także na Listę Obiektów Światowego Dziedzictwa Kulturowego i Przyrodniczego UNESCO. Zarówno na Obszarze Chronionym Ngorongoro, jak też w jego najbliższym sąsiedztwie znajduje się bardzo wiele obiektów, które ze wszech miar zasługują na miano atrakcji geoturystycznych; należą do nich m.in.: wąwóz Olduvai, krater Olmoti, krater Empakai bądź wulkan Oldoinyo Lengai. W stosunkowo niewielkiej odległości od krateru Ngorongoro znajduje się najwyższa góra Afryki - wulkan Kilimandżaro oraz największy czynny wulkan tego kontynentu - Meru

    Tectonic subdivision of Poland: southern Poland (Upper Silesian Block and Małopolska Block)

    No full text
    The attempt to divide the Upper Silesian Block and the Małopolska Block into tectonic units has been based on a general map at scale of 1:1000000, without Permian-Mesozoic and Cenozoic strata. Cartographic, general and monographic works regarding formation of Precambrian basement of both of the blocks have been discussed and presented, and data concerning development of sedimentation, tectonics, and structure of the Paleozoic cover of the blocks were the background for the suggested division. The Upper Silesian Block is a part of a larger unit determined as the Brunovistulicum, which together with the Brno Block are entirely located within the borders of the Czech Republic. The Brunovistulicum and the Małopolska Block vary in formation of Precambrian basement and covering Paleozoic formations, what proves different paleogeographical-facial and paleotectonic development. Current data do not allow determining their southern range, where both units are within the range of the orogeny of the Outer Carpathians and quite possibly in the range of the Inner Carpathians. The boundary of the Brunovistulicum and the Małopolska Block along the part between Lubliniec and Cracow and farther to the vicinity of Bochnia and Nowy Sącz is relatively well defined and documented. It is a narrow Cracow-Lubliniec fault zone, approximately 500 m wide, cutting and moving all rock series of the Precambrian and the Paleozoic. The fault zone of the Odra River probably forms its NW continuation. The following tectonic units have been distinguished in the Upper Silesian Block: 1) Moravian-Silesian Fold-and-Thrust Belt, 2) Upper Silesian Fold Zone, 3) Upper Silesian Trough, 4) Bielsko-Biała Dome, 5) Rzeszotary Horst, 6) Liplas Graben. There is only one tectonic unit distinguished in the Małopolska Block-Kielce Fold Belt, dipping towards NW-SE, along the NE boundary of the block. Paleozoic formations building the unit represent thrust fault structure. In this case, the Kielce Fold Belt significantly varies from the other parts of the Małopolska Block, where Paleozoic formations build numerous small block structures
    corecore