4 research outputs found

    Stable gastric pentadecapeptide BPC 157 heals cysteamine-colitis and colon-colon-anastomosis and counteracts cuprizone brain injuries and motor disability

    Get PDF
    Stable gastric pentadecapeptide BPC 157 was suggested to link inflammatory bowel disease and multiple sclerosis, and thereby, shown to equally counteract the models of both of those diseases. For colitis, cysteamine (400 mg/kg intrarectally (1 ml/rat)) and colon-colon anastomosis (sacrifice at day 3, 5, 7, and 14) were used. BPC 157 (10 μg/kg, 10 ng/kg) was applied either intraperitoneally once time daily (first application immediately after surgery, last at 24 hours before sacrifice) or per-orally in drinking water (0.16 μg/ml/12 ml/day till the sacrifice) while controls simultaneously received an equivolume of saline (5 ml/kg) intraperitoneally or drinking water only (12 ml/day). A multiple sclerosis suited toxic rat model, cuprizone (compared with standard, a several times higher regimen, 2.5% of diet regimen + 1 g/kg intragastrically/day) was combined with BPC 157 (in drinking water 0.16 μg or 0.16 ng/ml/12 ml/day/rat + 10 μg or 10 ng/kg intragastrically/day) till the sacrifice at day 4. In general, the controls could not heal cysteamine colitis and colon-colon anastomosis. BPC 157 induced an efficient healing of both at the same time. Likewise, cuprizone-controls clearly exhibited an exaggerated and accelerated damaging process; nerve damage appeared in various brain areas, with most prominent damage in corpus callosum, laterodorsal thalamus, nucleus reunions, anterior horn motor neurons. BPC 157-cuprizone rats had consistently less nerve damage in all damaged areas, especially in those areas that otherwise were most affected. Consistently, BPC 157 counteracted cerebellar ataxia and impaired forelimb function. Thereby, this experimental evidence advocates BPC 157 in both inflammatory bowel disease and multiple sclerosis therapy

    Genetic and Population Structure of Croatian Local Donkey Breeds

    No full text
    The two native Croatian donkey breeds (Littoral-Dinaric donkey and Istrian donkey) were marginalized in the second half of the 20th century and were on the verge of biological extinction. The aim of this study was to analyze the demographic and genetic status of two donkey breeds, two decades after the start of protection by analyzing their pedigrees and genetic structure. The average generation interval was higher for the Istrian donkey (7.73) than for the Littoral-Dinaric donkey (7.27). The rate of the effective number of founders compared with the effective number of ancestors in the Littoral-Dinaric donkey (1.03; 325/316) and in the Istrian donkey (1.08; 70/65) revealed no evidence of a genetic bottleneck. The inbreeding coefficient (F) and the average relatedness coefficient (AR) was lower in the Littoral-Dinaric donkey population (0.99%; 0.13%) than in the Istrian donkey population (1.77%; 1.10%). Genetic microsatellite analysis showed relatively high genetic diversity in Littoral-Dinaric donkey and Istrian donkey breeds, expressed by mean allele number (5.92; 5.85) and expected heterozygosity (0.650; 0.653). Genetic differentiation between the Littoral-Dinaric donkey and the Istrian donkey has not significantly increased in the last two decades (F-ST = 0.028). Genetic analysis also showed no evidence of high inbreeding or genetic bottleneck in both breeds. A total of 11 haplotypes including 28 polymorphic sites were found in 30 samples. Analysis of mtDNA has shown that the Littoral-Dinaric donkey and Istrian donkey breeds belong to the Equus asinus africanus group. The study confirms the need to use different analytical approaches to get a regular and complete insight into the situation and trends within and between breeds, so that the existing diversity can be fully preserved
    corecore