4 research outputs found

    Darstellung der extra- und intrakraniellen hirnversorgenden Arterien durch die kontrastmittelunterstĂŒtzte Farbduplexsonographie

    Full text link
    Ultraschallkontrastmittel finden in der Diagnostik der extra- und intrakraniellen Arterien Anwendung, wenn die klinische Fragestellung nicht eindeutig zu beantworten ist. Diese Studie untersuchte den diagnostischen Zugewinn durch die Kontrastmittelgabe ĂŒber eine Infusionspumpe. In der extrakraniellen Darstellung der Karotiden fanden 17 Untersuchungen statt, hier ging es um den Stenosegrad des GefĂ€ĂŸes. In der intrakraniellen Diagnostik wurde es 65mal eingesetzt, v.a. bezĂŒglich eines potentiellen Kollateralkreislaufes innerhalb des Circulus arteriosus cerebri. Es konnte eine deutliche Verbesserung der Untersuchungsbedingungen in der Doppler- / Farbduplexsonographie festgestellt werden. Eine Diagnosestellung gelang in der extrakraniellen Anwendung ausnahmslos, in der intrakraniellen mißlang sie bei nur vier Patienten. Ein Kollateralfluß ĂŒber die A. communicans anterior bzw. posterior konnte bei 25 bzw. 32 Untersuchungen nachgewiesen werden (zuvor jeweils einmal). Die Kontrastmittelinfusion mittels Spritzenpumpe gewĂ€hrte gute Untersuchungsbedingungen und kann in vielen FĂ€llen die teurere und gefĂ€hrlichere Angiographie ersetzen

    sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots

    Get PDF
    Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked

    sPlotOpen – An environmentally balanced, open‐access, global dataset of vegetation plots

    Full text link
    Abstract Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co‐occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open‐access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local‐to‐regional datasets to openly release data. We thus present sPlotOpen, the largest open‐access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co‐occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot‐level data also include community‐weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 mÂČ. Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot‐level records. Software format Three main matrices (.csv), relationally linked.Agence Nationale de la Recherche http://dx.doi.org/10.13039/501100001665H2020 European Research Council http://dx.doi.org/10.13039/100010663Villum Fonden http://dx.doi.org/10.13039/100008398Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Narodowe Centrum Nauki http://dx.doi.org/10.13039/501100004281Latvia grantNSF http://dx.doi.org/10.13039/100003187Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661U.S. National Science Foundation http://dx.doi.org/10.13039/100000001GrantovĂĄ Agentura ČeskĂ© Republiky http://dx.doi.org/10.13039/501100001824German Centre for Integrative Biodiversity Research http://dx.doi.org/10.13039/501100020056FundaciĂłn BBVA http://dx.doi.org/10.13039/100007406Akademie Věd ČeskĂ© Republiky http://dx.doi.org/10.13039/501100004240Spanish Research Agency http://dx.doi.org/10.13039/501100011033National Research, Development and Innovation Office, Hungar http://dx.doi.org/10.13039/501100018818Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung http://dx.doi.org/10.13039/501100001711Basque Government http://dx.doi.org/10.13039/501100003086Russian Foundation for Basic Research http://dx.doi.org/10.13039/501100002261Brazil’s National Council of Scientific and Technological DevelopmentVolkswagen Foundation http://dx.doi.org/10.13039/50110000166
    corecore