124 research outputs found

    Signals of the QCD Phase Transition in the Heavens

    Get PDF
    The modern phase diagram of strongly interacting matter reveals a rich structure at high-densities due to phase transitions related to the chiral symmetry of quantum chromodynamics (QCD) and the phenomenon of color superconductivity. These exotic phases have a significant impact on high-density astrophysics, such as the properties of neutron stars, and the evolution of astrophysical systems as proto-neutron stars, core-collapse supernovae and neutron star mergers. Most recent pulsar mass measurements and constraints on neutron star radii are critically discussed. Astrophysical signals for exotic matter and phase transitions in high-density matter proposed recently in the literature are outlined. A strong first order phase transition leads to the emergence of a third family of compact stars besides white dwarfs and neutron stars. The different microphysics of quark matter results in an enhanced r-mode stability window for rotating compact stars compared to normal neutron stars. Future telescope and satellite data will be used to extract signals from phase transitions in dense matter in the heavens and will reveal properties of the phases of dense QCD. Spectral line profiles out of x-ray bursts will determine the mass-radius ratio of compact stars. Gravitational wave patterns from collapsing neutron stars or neutron star mergers will even be able to constrain the stiffness of the quark matter equation of state. Future astrophysical data can therefore provide a crucial cross-check to the exploration of the QCD phase diagram with the heavy-ion program of the CBM detector at the FAIR facility

    Meisterhaft erklärt, humorvoll geschrieben : Top-Physikerin führt durch höherdimensionale gekrümmte Räume

    Get PDF
    Rezension zu: Lisa Randall : Verborgene Universen : Eine Reise in den extradimensionalen Raum, Fischer Verlag, Frankfurt 2006, ISBN-13: 978-3-10-062805-3, 448 Seiten, 19,90 Euro

    Classifications of Twin Star Solutions for a Constant Speed of Sound Parameterized Equation of State

    Full text link
    We explore the possible mass radius relation of compact stars for the equation of states with a first order phase transition. The low density matter is described by a nuclear matter equation of state resulting from fits to nuclear properties. A constant speed of sound parametrization is used to describe the high density matter phase with the speed of sound cs2=1c_s^2=1. A classification scheme of four distinct categories including twin star solutions, i. e. solutions with the same mass but differing radii, is found which are compatible with the M2MM \ge 2M_\odot pulsar mass constraint. We show the dependence of the mass and radius differences on the transition parameters and delineate that higher twin star masses are more likely to be accompanied by large radius differences. These massive twin stars are generated by high values of the discontinuity in the energy density and the lowest possible values of the transition pressure that still result in masses of M2MM \geq 2M_\odot at the maximum of the hadronic branch.Comment: 8 pages, 9 figure
    corecore