2 research outputs found

    OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation

    Get PDF
    The dynamin-related GTPase OPA1 is mutated in autosomal dominant optic atrophy (DOA) (Kjer type), an inherited neuropathy of the retinal ganglion cells. OPA1 is essential for the fusion of the inner mitochondrial membranes, but its mechanism of action remains poorly understood. Here we show that OPA1 has a low basal rate of GTP hydrolysis that is dramatically enhanced by association with liposomes containing negative phospholipids such as cardiolipin. Lipid association triggers assembly of OPA1 into higher order oligomers. In addition, we find that OPA1 can promote the protrusion of lipid tubules from the surface of cardiolipin-containing liposomes. In such lipid protrusions, OPA1 assemblies are observed on the outside of the lipid tubule surface, a protein-membrane topology similar to that of classical dynamins. The membrane tubulation activity of OPA1 is suppressed by GTPĪ³S. OPA1 disease alleles associated with DOA display selective defects in several activities, including cardiolipin association, GTP hydrolysis and membrane tubulation. These findings indicate that interaction of OPA1 with membranes can stimulate higher order assembly, enhance GTP hydrolysis and lead to membrane deformation into tubules

    Projection structure and molecular architecture of OxlT, a bacterial membrane transporter

    No full text
    The major facilitator superfamily (MFS) represents the largest collection of evolutionarily related members within the class of membrane ā€˜carrierā€™ proteins. OxlT, a representative example of the MFS, is an oxalate-transporting membrane protein in Oxalobacter formigenes. From an electron crystallographic analysis of two-dimensional crystals of OxlT, we have determined the projection structure of this membrane transporter. The projection map at 6 ā„« resolution indicates the presence of 12 transmembrane helices in each monomer of OxlT, with one set of six helices related to the other set by an approximate internal two-fold axis. The projection map reveals the existence of a central cavity, which we propose to be part of the pathway of oxalate transport. By combining information from the projection map with related biochemical data, we present probable models for the architectural arrangement of transmembrane helices in this protein superfamily
    corecore