60 research outputs found
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
Study protocol: an early intervention program to improve motor outcome in preterm infants: a randomized controlled trial and a qualitative study of physiotherapy performance and parental experiences
Background Knowledge about early physiotherapy to preterm infants is sparse, given the risk of delayed motor development and cerebral palsy. Methods/Design A pragmatic randomized controlled study has been designed to assess the effect of a preventative physiotherapy program carried out in the neonatal intensive care unit. Moreover, a qualitative study is carried out to assess the physiotherapy performance and parents' experiences with the intervention. The aim of the physiotherapy program is to improve motor development i.e. postural control and selective movements in these infants. 150 infants will be included and randomized to either intervention or standard follow-up. The infants in the intervention group will be given specific stimulation to facilitate movements based on the individual infant's development, behavior and needs. The physiotherapist teaches the parents how to do the intervention and the parents receive a booklet with photos and descriptions of the intervention. Intervention is carried out twice a day for three weeks (week 34, 35, 36 postmenstrual age). Standardized tests are carried out at baseline, term age and at three, six, 12 and 24 months corrected age. In addition eight triads (infant, parent and physiotherapist) are observed and videotaped in four clinical encounters each to assess the process of physiotherapy performance. The parents are also interviewed on their experiences with the intervention and how it influences on the parent-child relationship. Eight parents from the follow up group are interviewed about their experience. The interviews are performed according to the same schedule as the standardized measurements. Primary outcome is at two years corrected age. Discussion The paper presents the protocol for a randomized controlled trial designed to study the effect of physiotherapy to preterm infants at neonatal intensive care units. It also studies physiotherapy performance and the parent's experiences with the intervention
The Highly Virulent 2006 Norwegian EHEC O103:H25 Outbreak Strain Is Related to the 2011 German O104:H4 Outbreak Strain
In 2006, a severe foodborne EHEC outbreak occured in Norway. Seventeen cases were recorded and the HUS frequency was 60%. The causative strain, Esherichia coli O103:H25, is considered to be particularly virulent. Sequencing of the outbreak strain revealed resemblance to the 2011 German outbreak strain E. coli O104:H4, both in genome and Shiga toxin 2-encoding (Stx2) phage sequence. The nucleotide identity between the Stx2 phages from the Norwegian and German outbreak strains was 90%. During the 2006 outbreak, stx2-positive O103:H25 E. coli was isolated from two patients. All the other outbreak associated isolates, including all food isolates, were stx-negative, and carried a different phage replacing the Stx2 phage. This phage was of similar size to the Stx2 phage, but had a distinctive early phage region and no stx gene. The sequence of the early region of this phage was not retrieved from the bacterial host genome, and the origin of the phage is unknown. The contaminated food most likely contained a mixture of E. coli O103:H25 cells with either one of the phages
Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes
Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants
Rare and low-frequency coding variants alter human adult height
Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways
Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1
Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression
Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
A genome-wide association search for type 2 diabetes genes in African Americans.
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations
- …