48 research outputs found
Restratification of Abyssal Mixing Layers by Submesoscale Baroclinic Eddies
For small-scale turbulence to achieve water mass transformation and thus affect the large-scale overturning circulation, it must occur in stratified water. Observations show that abyssal turbulence is strongly enhanced in the bottom few hundred meters in regions with rough topography, and it is thought that these abyssal mixing layers are crucial for closing and shaping the overturning circulation. If it were left unopposed, however, bottom-intensified turbulence would mix away the observed mixing-layer stratification over the course of a few years. It is proposed here that the homogenizing tendency of mixing may be balanced by baroclinic restratification. It is shown that bottom-intensified mixing, if it occurs on a large-scale topographic slope such as a midocean ridge flank, not only erodes stratification but also tilts isopycnals in the bottom few hundred meters. This tilting of isopycnals generates a reservoir of potential energy that can be tapped into by submesoscale baroclinic eddies. The eddies slide dense water under light water and thus restratify the mixing layer, similar to what happens in the surface mixed layer. This restratification is shown to be effective enough to balance the homogenizing tendency of mixing and to maintain the observed mixing-layer stratification. This suggests that submesoscale baroclinic eddies may play a crucial role in providing the stratification mixing can act on, thus allowing sustained water mass transformation. Through their restratification of abyssal mixing layers, submesoscale eddies may therefore directly affect the strength and structure of the abyssal overturning circulation
SIDEBAR. Submesoscale Dynamics Inferred from Oleander Data
CMV Oleander III data played a key role in advancing our understanding of submesoscale turbulence, which is suspected to control the exchange of heat, carbon, and nutrients between the surface and the interior ocean (e.g., Ferrari, 2011; Mahadevan, 2016). Insight largely came from wavenumber spectra of kinetic energy, which decompose the flow observed with the shipboard ADCP into contributions from different spatial scales that cover a range of about 10–500 km in the case of Oleander
Mixing-Driven Mean Flows and Submesoscale Eddies over Mid-Ocean Ridge Flanks and Fracture Zone Canyons
To close the abyssal overturning circulation, dense bottom water has to become lighter by mixing with lighter water above. This diapycnal mixing is strongly enhanced over rough topography in abyssal mixing layers, which span the bottom few hundred meters of the water column. In particular, mixing rates are enhanced over mid-ocean ridge systems, which extend for thousands of kilometers in the global ocean and are thought to be key contributors to the required abyssal water mass transformation. To examine how stratification and thus diabatic transformation is maintained in such abyssal mixing layers, this study explores the circulation driven by bottom-intensified mixing over mid-ocean ridge flanks and within ridge-flank canyons. Idealized numerical experiments show that stratification over the ridge flanks is maintained by submesoscale baroclinic eddies and that stratification within ridge-flank canyons is maintained by mixing-driven mean flows. These restratification processes affect how strong a diabatic buoyancy flux into the abyss can be maintained, and they are essential for maintaining the dipole in water mass transformation that has emerged as the hallmark of a diabatic circulation driven by bottom-intensified mixing
Interpreting Observed Interactions between Near-Inertial Waves and Mesoscale Eddies
The evolution of wind-generated near-inertial waves (NIWs) is known to be
influenced by the mesoscale eddy field, yet it remains a challenge to
disentangle the effects of this interaction in observations. NIWs are often
modeled using a slab mixed-layer model with no horizontal structure. Here, the
theoretical model of Young and Ben Jelloul, which describes the evolution of
NIWs in the presence of a slowly-evolving mesoscale eddy field, is compared to
observations from a mooring array in the Northeast Atlantic Ocean. The model
captures the evolution of both the observed NIW amplitude and phase much more
accurately than the slab mixed-layer model, and it allows attributing the
evolution to specific physical processes. The model reveals that differences in
NIW amplitude across the mooring array are caused by refraction of NIWs into
anticyclones. Advection and wave dispersion also make non-negligible
contributions to the observed wave evolution. Stimulated generation, a process
by which mesoscale kinetic energy acts as a source of NIW potential energy, is
estimated to be 20W in the region of the mooring array. This is two orders
of magnitude smaller than the global average input to mesoscale kinetic energy
and likely not an important contribution to the mesoscale kinetic energy budget
in this region.Comment: Submitted to Journal of Physical Oceanograph
Abyssal Circulation Driven By Near-Boundary Mixing: Water Mass Transformations and Interior Stratification
The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories
Abyssal Circulation Driven By Near-Boundary Mixing: Water Mass Transformations and Interior Stratification
The emerging view of the abyssal circulation is that it is associated with bottom-enhanced mixing, which results in downwelling in the stratified ocean interior and upwelling in a bottom boundary layer along the insulating and sloping seafloor. In the limit of slowly varying vertical stratification and topography, however, boundary layer theory predicts that these upslope and downslope flows largely compensate, such that net water mass transformations along the slope are vanishingly small. Using a planetary geostrophic circulation model that resolves both the boundary layer dynamics and the large-scale overturning in an idealized basin with bottom-enhanced mixing along a midocean ridge, we show that vertical variations in stratification become sufficiently large at equilibrium to reduce the degree of compensation along the midocean ridge flanks. The resulting large net transformations are similar to estimates for the abyssal ocean and span the vertical extent of the ridge. These results suggest that boundary flows generated by mixing play a crucial role in setting the global ocean stratification and overturning circulation, requiring a revision of abyssal ocean theories