14 research outputs found

    Determination of the Slice Energy Spread of Ultra-Relativistic Electron Beams by Scanning Seeded Coherent Undulator Radiation

    No full text
    Modern high-gain free-electron lasers make use of high-brightness ultra-relativistic electron beams. The uncorrelated energy spread of these beams is upon creation of the beam in the sub-permille range and below the resolution of state-of-the-art diagnostics. One method to determine the slice energy spread is to use an external seed laser to imprint a coherent microbunching structure that gives rise to coherent radiation processes, different radiation sources such as transition radiation, synchrotron radiation, or undulator radiation and others. Here, we present a method and show measurements to determine the slice energy spread using an external seed laser with 266 nm wavelength to produce coherent undulator radiation at higher harmonics. The distribution of these harmonics allows retrieval of the electron beam slice energy spread with high precision

    Parameter Optimization for Operation of sFLASH With Echo-Enabled Harmonic Generation

    No full text
    The free-electron laser facility FLASH has a dedicated experimental setup for external FEL seeding applications for the XUV and soft x-ray spectral range. Recently the setup is operated as high-gain harmonic generation FEL. Furthermore, it also allows the operation of echo-enabled harmonic generation (EEHG). A versatile laser injection system allows operation with seed wavelength in the infra-red, visible, and ultra-violet. Here, we present the parameter optimization for operating the seeding setup with EEHG. First experimental tests are planned in the first half of 2017

    Mapping few-femtosecond slices of ultra-relativistic electron bunches

    No full text
    Free-electron lasers are unique sources of intense and ultra-short x-ray pulses that led to major scientific breakthroughs across disciplines from matter to materials and life sciences. The essential element of these devices are micrometer-sized electron bunches with high peak currents, low energy spread, and low emittance. Advanced FEL concepts such as seeded amplifiers rely on the capability of analyzing and controlling the electron beam properties with few-femtosecond time resolution. One major challenge is to extract tomographic slice parameters instead of projected electron beam properties. Here, we demonstrate that a radio-frequency deflector in combination with a dipole spectrometer not only allows for single-shot extraction of a seeded FEL pulse profile, but also provides information on the electron slice emittance and energy spread. The seeded FEL power profile can be directly related to the derived slice emittance as a function of intra-bunch coordinate with a resolution down to a few femtoseconds

    Extraction of the Longitudinal Profile of the Transverse Emittance From Single-Shot RF Deflector Measurements at sFLASH

    No full text
    The gain length of the free-electron laser (FEL) process strongly depends on the slice energy spread, slice emittance, and current of the electron bunch. At an FEL with only moderately compressed electron bunches, the slice energy spread is mainly determined by the compression process. In this regime, single-shot measurements using a transverse deflecting rf cavity enable the extraction of the longitudinal profile of the transverse emittance. At the free-electron laser FLASH at DESY, this technique was used to determine the slice properties of the electron bunch set up for seeded operation in the sFLASH experiment. Thereby, the performance of the seeded FEL process as a function of laser-electron timing can be predicted from these slice properties with the semi-analytical Ming-Xie model where only confined fractions of the electron bunch are stimulated to lase. The prediction is well in line with the FEL peak power observed during an experimental laser-electron timing scan. The power profiles of the FEL pulses were reconstructed from the longitudinal phase-space measurements of the seeded electron bunch that was measured with the rf deflector

    An Option to Generate Seeded FEL Radiation for FLASH1

    No full text
    The FLASH free-electron laser (FEL) at DESY is currently operated in self-amplified spontaneous emission (SASE) mode in both beamlines FLASH1 and FLASH2. Seeding offers unique properties for the FEL pulse, such as full coherence, spectral and temporal stability. In this contribution, possible ways to carry the seeded FEL radiation to the user hall are presented with analytical considerations and simulations. For this, components of the sFLASH seeding experiment are use

    An Option to Generate Seeded FEL Radiation for FLASH1

    No full text
    The FLASH free-electron laser (FEL) at DESY is currently operated in self-amplified spontaneous emission (SASE) mode in both beamlines FLASH1 and FLASH2. Seeding offers unique properties for the FEL pulse, such as full coherence, spectral and temporal stability. In this contribution, possible ways to carry the seeded FEL radiation to the user hall are presented with analytical considerations and simulations. For this, components of the sFLASH seeding experiment are used

    A high-harmonic generation source for seeding a free-electron laser at 38 nm

    No full text
    Direct seeding with a high-harmonic generation (HHG) source can improve the spectral, temporal, and coherence properties of a free-electron laser (FEL) and shall reduce intensity and arrival-time fluctuations. In the seeding experiment sFLASH at the extreme ultraviolet FEL in Hamburg FLASH, which operates in the self-amplified spontaneous emission mode (SASE), the 21st harmonic of an 800 nm laser is refocused into a dedicated seeding undulator. For seeding, the external light field has to overcome the noise level of SASE; therefore, an efficient coupling between seed pulse and electron bunch is mandatory. Thus, an HHG beam with a proper divergence, width, beam quality, Rayleigh length, pointing stability, single-shot pulse energy, and stability in the 21st harmonic is needed. Here, we present the setup of the HHG source that seeds sFLASH at 38.1 nm, the optimization procedures, and the necessary diagnostics

    Control of FEL Radiation by Tailoring the Seed Pulses

    No full text
    Seeded free-electron lasers (FELs) produce intense, ultrashort and fully coherent X-ray pulses. These seeded FEL pulses depend on the initial seed properties. Therefore, controlling the seed laser allows tailoring the FEL radiation for phase-sensitive experiments. In this contribution, we present detailed simulation studies to characterize the FELprocess and to predict the operation performance of seeded pulses. In addition, we show experimental data on the temporal characterization of the seeded FEL pulses performed at the sFLASH experiment in Hamburg

    Free-Electron Laser Multiplex Driven by a Superconducting Linear Accelerator

    No full text
    Free-electron lasers (FELs) generate femtosecond XUV and X-ray pulses at peak powers in the gigawatt range. The FEL user facility FLASH at DESY (Hamburg, Germany) is driven by a superconducting linear accelerator with up to 8000 pulses per second. Since 2014, two parallel undulator beamlines, FLASH1 and FLASH2, have been in operation. In addition to the main undulator, the FLASH1 beamline is equipped with an undulator section, sFLASH, dedicated to research and development of fully coherent extreme ultraviolet photon pulses using external seed lasers. In this contribution, the first simultaneous lasing of the three FELs at 13.4 nm, 20 nm and 38.8 nm is presented
    corecore