18 research outputs found
Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology
Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology
Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons
Brown fat does not cause cachexia in cancer patients: A large retrospective longitudinal FDG-PET/CT cohort study
BACKGROUND
Brown adipose tissue (BAT) is a specialized form of adipose tissue, able to increase energy expenditure by heat generation in response to various stimuli. Recently, its pathological activation has been implicated in the pathogenesis of cancer cachexia. To establish a causal relationship, we retrospectively investigated the longitudinal changes in BAT and cancer in a large FDG-PET/CT cohort.
METHODS
We retrospectively analyzed 13 461 FDG-PET/CT examinations of n = 8 409 patients at our institution from the winter months of 2007-2015. We graded the activation strength of BAT based on the anatomical location of the most caudally activated BAT depot into three tiers, and the stage of the cancer into five general grades. We validated the cancer grading by an interreader analysis and correlation with histopathological stage. Ambient temperature data (seven-day average before the examination) was obtained from a meteorological station close to the hospital. Changes of BAT, cancer, body mass index (BMI) and temperature between the different examinations were examined with Spearman's test and a mixed linear model for correlation, and with a causal inference algorithm for causality.
RESULTS
We found n = 283 patients with at least two examinations and active BAT in at least one of them. There was no significant interaction between the changes in BAT activation, cancer burden or BMI. Temperature changes exhibited a strong negative correlation with BAT activity (ϱ = -0.57, p<0.00001). These results were confirmed with the mixed linear model. Causal inference revealed a link of Temperature ➜ BAT in all subjects and also of BMI ➜ BAT in subjects who had lost weight and increased cancer burden, but no role of cancer and no causal links of BAT ➜ BMI.
CONCLUSIONS
Our data did not confirm the hypothesis that BAT plays a major role in cancer-mediated weight loss. Temperature changes are the main driver of incidental BAT activity on FDG-PET scans
Brown fat does not cause cachexia in cancer patients: A large retrospective longitudinal FDG-PET/CT cohort study
Background
Brown adipose tissue (BAT) is a specialized form of adipose tissue, able to increase energy expenditure by heat generation in response to various stimuli. Recently, its pathological activation has been implicated in the pathogenesis of cancer cachexia. To establish a causal relationship, we retrospectively investigated the longitudinal changes in BAT and cancer in a large FDG-PET/CT cohort.
Methods
We retrospectively analyzed 13 461 FDG-PET/CT examinations of n = 8 409 patients at our institution from the winter months of 2007–2015. We graded the activation strength of BAT based on the anatomical location of the most caudally activated BAT depot into three tiers, and the stage of the cancer into five general grades. We validated the cancer grading by an interreader analysis and correlation with histopathological stage. Ambient temperature data (seven-day average before the examination) was obtained from a meteorological station close to the hospital. Changes of BAT, cancer, body mass index (BMI) and temperature between the different examinations were examined with Spearman’s test and a mixed linear model for correlation, and with a causal inference algorithm for causality.
Results
We found n = 283 patients with at least two examinations and active BAT in at least one of them. There was no significant interaction between the changes in BAT activation, cancer burden or BMI. Temperature changes exhibited a strong negative correlation with BAT activity (ϱ = -0.57, p<0.00001). These results were confirmed with the mixed linear model. Causal inference revealed a link of Temperature ➜ BAT in all subjects and also of BMI ➜ BAT in subjects who had lost weight and increased cancer burden, but no role of cancer and no causal links of BAT ➜ BMI.
Conclusions
Our data did not confirm the hypothesis that BAT plays a major role in cancer-mediated weight loss. Temperature changes are the main driver of incidental BAT activity on FDG-PET scans. © 2020 Public Library of ScienceISSN:1932-620