80 research outputs found
Berry Phase of a Resonant State
We derive closed analytical expressions for the complex Berry phase of an
open quantum system in a state which is a superposition of resonant states and
evolves irreversibly due to the spontaneous decay of the metastable states. The
codimension of an accidental degeneracy of resonances and the geometry of the
energy hypersurfaces close to a crossing of resonances differ significantly
from those of bound states. We discuss some of the consequences of these
differences for the geometric phase factors, such as: Instead of a diabolical
point singularity there is a continuous closed line of singularities formally
equivalent to a continuous distribution of `magnetic' charge on a diabolical
circle; different classes of topologically inequivalent non-trivial closed
paths in parameter space, the topological invariant associated to the sum of
the geometric phases, dilations of the wave function due to the imaginary part
of the Berry phase and others.Comment: 28 pages Latex, three uuencoded postcript figure
Gravitational Instantons from Minimal Surfaces
Physical properties of gravitational instantons which are derivable from
minimal surfaces in 3-dimensional Euclidean space are examined using the
Newman-Penrose formalism for Euclidean signature. The gravitational instanton
that corresponds to the helicoid minimal surface is investigated in detail.
This is a metric of Bianchi Type , or E(2) which admits a hidden
symmetry due to the existence of a quadratic Killing tensor. It leads to a
complete separation of variables in the Hamilton-Jacobi equation for geodesics,
as well as in Laplace's equation for a massless scalar field. The scalar Green
function can be obtained in closed form which enables us to calculate the
vacuum fluctuations of a massless scalar field in the background of this
instanton.Comment: One figure available by fax upon request. Abstract missing in
original submission. Submitted to Classical and Quantum Gravit
On Hirschman and log-Sobolev inequalities in mu-deformed Segal-Bargmann analysis
We consider a deformation of Segal-Bargmann space and its transform. We study
L^p properties of this transform and obtain entropy-entropy inequalities
(Hirschman) and entropy-energy inequalities (log-Sobolev) that generalize the
corresponding known results in the undeformed theory.Comment: 42 pages, 3 figure
Management and efficacy of intensified insulin therapy starting in outpatients
Diabetic patients under multiple injection insulin therapy (i.e., intensified insulin therapy, IIT) usually start this treatment during hospitalization. We report here on the logistics, efficacy, and safety of IIT, started in outpatients. Over 8 months, 52 type I and type II diabetics were followed up whose insulin regimens consecutively had been changed from conventional therapy to IIT. Two different IIT strategies were compared: free mixtures of regular and intermediate (12 hrs)-acting insulin versus the basal and prandial insulin treatment with preprandial injections of regular insulin, and ultralente (24 hrs-acting) or intermediate insulin for the basal demand. After 8 months HbA1 levels had decreased from 10.6%±2.4% to 8.0%±1.3% (means±SD). There was no difference between the two regimens with respect to metabolic control; but type II patients maintained the lowered HbA1 levels better than type I patients. Only two patients were hospitalized during the follow-up time because of severe hypoglycemia. An increase of body weight due to the diet liberalization during IIT became a problem in one-third of the patients. Our results suggest that outpatient initiation of IIT is safe and efficacious with respect to near-normoglycemic control. Weight control may become a problem in IIT patients
On the Global Existence of Bohmian Mechanics
We show that the particle motion in Bohmian mechanics, given by the solution
of an ordinary differential equation, exists globally: For a large class of
potentials the singularities of the velocity field and infinity will not be
reached in finite time for typical initial values. A substantial part of the
analysis is based on the probabilistic significance of the quantum flux. We
elucidate the connection between the conditions necessary for global existence
and the self-adjointness of the Schr\"odinger Hamiltonian.Comment: 35 pages, LaTe
Clinically focused multi-cohort benchmarking as a tool for external validation of artificial intelligence algorithm performance in basic chest radiography analysis
Artificial intelligence (AI) algorithms evaluating [supine] chest radiographs ([S]CXRs) have remarkably increased in number recently. Since training and validation are often performed on subsets of the same overall dataset, external validation is mandatory to reproduce results and reveal potential training errors. We applied a multicohort benchmarking to the publicly accessible (S)CXR analyzing AI algorithm CheXNet, comprising three clinically relevant study cohorts which differ in patient positioning ([S]CXRs), the applied reference standards (CT-/[S]CXR-based) and the possibility to also compare algorithm classification with different medical experts’ reading performance. The study cohorts include [1] a cohort, characterized by 563 CXRs acquired in the emergency unit that were evaluated by 9 readers (radiologists and non-radiologists) in terms of 4 common pathologies, [2] a collection of 6,248 SCXRs annotated by radiologists in terms of pneumothorax presence, its size and presence of inserted thoracic tube material which allowed for subgroup and confounding bias analysis and [3] a cohort consisting of 166 patients with SCXRs that were evaluated by radiologists for underlying causes of basal lung opacities, all of those cases having been correlated to a timely acquired computed tomography scan (SCXR and CT within < 90 min). CheXNet non-significantly exceeded the radiology resident (RR) consensus in the detection of suspicious lung nodules (cohort [1], AUC AI/RR: 0.851/0.839, p = 0.793) and the radiological readers in the detection of basal pneumonia (cohort [3], AUC AI/reader consensus: 0.825/0.782, p = 0.390) and basal pleural effusion (cohort [3], AUC AI/reader consensus: 0.762/0.710, p = 0.336) in SCXR, partly with AUC values higher than originally published (“Nodule”: 0.780, “Infiltration”: 0.735, “Effusion”: 0.864). The classifier “Infiltration” turned out to be very dependent on patient positioning (best in CXR, worst in SCXR). The pneumothorax SCXR cohort [2] revealed poor algorithm performance in CXRs without inserted thoracic material and in the detection of small pneumothoraces, which can be explained by a known systematic confounding error in the algorithm training process. The benefit of clinically relevant external validation is demonstrated by the differences in algorithm performance as compared to the original publication. Our multi-cohort benchmarking finally enables the consideration of confounders, different reference standards and patient positioning as well as the AI performance comparison with differentially qualified medical readers
Hamiltonian structure of real Monge-Amp\`ere equations
The real homogeneous Monge-Amp\`{e}re equation in one space and one time
dimensions admits infinitely many Hamiltonian operators and is completely
integrable by Magri's theorem. This remarkable property holds in arbitrary
number of dimensions as well, so that among all integrable nonlinear evolution
equations the real homogeneous Monge-Amp\`{e}re equation is distinguished as
one that retains its character as an integrable system in multi-dimensions.
This property can be traced back to the appearance of arbitrary functions in
the Lagrangian formulation of the real homogeneous Monge-Amp\`ere equation
which is degenerate and requires use of Dirac's theory of constraints for its
Hamiltonian formulation. As in the case of most completely integrable systems
the constraints are second class and Dirac brackets directly yield the
Hamiltonian operators. The simplest Hamiltonian operator results in the
Kac-Moody algebra of vector fields and functions on the unit circle.Comment: published in J. Phys. A 29 (1996) 325
Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation
Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds
- …