21 research outputs found

    Struktur-, Dynamik- und Stabilitätsuntersuchungen an RNA mittels NMR-Spektroskopie

    Get PDF
    Die Genexpression in prokaryotischen Organismen unterliegt einer Vielzahl von Regulationsmechanismen, deren Aufgabe darin besteht, die Zelle an sich ändernde Umweltbedingungen anzupassen, um so das Überleben des prokaryotischen Organismus zu gewährleisten. Eine Reihe von Hitzeschock- und Virulenzgenen unterliegen temperaturabhängiger Regulation, mit dem Ziel, die Zelle an die sich ändernde Umgebung anzupassen. Die Messung der Temperatur erfolgt dabei über temperatursensitive RNA-Elemente, sogenannte RNA-Thermometer, die sich üblicherweise in der 5’-untranslatierten Region der Gene befinden, die sie regulieren. Sie unterdrücken die Translationsinitiation, indem sie die Shine-Dalgarno (SD)-Sequenz bei niedrigen Temperaturen über Basenpaarung blockieren und dadurch die Bindung des Ribosoms verhindern. In Kapitel 2 der vorliegenden Arbeit wurde die thermodynamische Stabilität der temperatursensitiven Haarnadelschleife 2 des Salmonella FourU RNA-Thermometers über einen breiten Temperaturbereich analysiert. Freie Enthalpie-, Enthalpie- und Entropie-Werte für die Basenpaaröffnung der einzelnen Nukleobasen innerhalb der RNA wurden über die temperaturabhängige Messung von Iminoprotonen-Austauschraten mittels NMR-Spektroskopie bestimmt. Die Austauschraten wurden für die Wildtyp-RNA und die A8C-Mutante bestimmt und miteinander verglichen. Es zeigte sich, dass die Wildtyp-RNA durch das außergewöhnlich stabile Basenpaar G14-C25 stabilisiert wird. Dies konnte durch die Untersuchung der Entfaltung der destabilisierenden G14A-C25U-Doppelmutante verifiziert werden. Über CD-spektroskopsiche Untersuchungen konnte der globale Entfaltungsübergang der jeweiligen RNA analysiert werden. Das Mismatch-Basenpaar innerhalb des Wildtyp-RNA-Thermometers (A8-G31) erwies sich als Ursache für die geringere Kooperativität des Entfaltungsübergangs der Wildtyp-RNA im Vergleich zur A8C-Mutante. Enthalpie- und Entropie-Werte für die Basenpaaröffnung einzelner Nukleotide sind für beide RNAs linear korreliert. Die Steigungen dieser Korrelationen stimmen mit den Schmelzpunkten der RNAs überein, die über CD-Spektroskopie bestimmt wurden. Entfaltung der RNA tritt also genau dann auf, wenn alle Nukleotide gleiche thermodynamische Stabilitäten besitzen. Die Resultate sind mit einem Reißverschluss-Mechanismus für die RNA-Helix Entfaltung konsistent und erklärbar, in dem die Stapelinteraktionen der benachbarten Nukleobasen innerhalb der RNA-Helix verantwortlich für die beobachtete Kooperativität sind. Die Ergebnisse weisen auch auf die Wichtigkeit der RNA-Lösungsmittel-Interaktion für die Stabilität der RNA-Struktur hin. So konnten langreichweitige Wechselwirkungen der A8C-Mutation auf die Stabilität der G14-Nukleobase identifiziert werden, die möglicherweise über die Hydrathülle der RNA vermittelt werden. Schließlich konnte für das FourU-Motiv eine Mg2+-Bindestelle identifiziert werden, die die temperaturabhängige Stabilität des RNA-Thermometers beeinflusst. Es besteht also die Möglichkeit, dass Änderungen der intrazellulären Mg2+-Konzentration die Expression des agsA-Gens in vivo modulierend beeinflussen. In Kapitel 3 dieser Arbeit wurden die dynamischen Eigenschaften des Phosphodiesterrückgrats einer perdeuterierten cUUCGg-Tetraloop-14mer-RNA untersucht. Dazu wurden die Relaxationseigenschaften aller 31P-Kerne dieser RNA bei magnetischen Feldstärken von 300, 600 und 900 MHz untersucht. Dipolare Relaxationsbeiträge konnten unterdrückt werden, indem eine perdeuterierte RNA-Probe in einem D2O-Puffer verwendet wurde. Um die 31P-Relaxationsdaten (R1, R2) interpretieren zu können, wurde zusätzlich mittels Festkörper-NMR die Chemische Verschiebungsanisotropie (CSA) der 31P-Kerne des Phosphodiesterrückgrats bestimmt. Die Messungen wurden bei verschiedenen Salzkonzentrationen und unter unterschiedlichen Hydratationsbedingungen durchgeführt. Aus den Daten konnte ein 31P-CSA-Wert von 178.5 ppm im statischen Zustand (S2 = 1) bestimmt werden. Auf der Grundlage der durchgeführten R1- und R2-Messungen wurde eine Modelfree-Analyse durchgeführt, um Informationen über die schnellen Dynamiken des Phosphodiesterrückgrats zu erhalten. Die Resultate zeigen, dass die Dynamiken des Phosphodiesterrückgrats auf der Subnanosekundenzeitskala stärker ausgeprägt sind als die Dynamiken der Ribofuranosylreste und der Nukleobasen. Des Weiteren konnte gezeigt werden, dass die Dynamik einer individuellen Phosphatgruppe zu der jeweiligen 5’-benachbarten Nukleobase korreliert ist. In Kapitel 4 dieser Arbeit wird die Entwicklung neuer Methoden beschrieben, mit denen Torsionswinkelinformation aus der Analyse kreuzkorrelierter Relaxationsraten gewonnen werden können. Im ersten Teil des Kapitels wird die Entwicklung einer neuen NMR-Pulssequenz beschrieben, über die der glykosidische Torsionswinkel Chi in 13C,15N-markierten Oligonukleotiden bestimmt werden kann. Mit dem neuen quantitativen Gamma-HCNCH-Experiment ist es möglich, die dipolaren kreuzkorrelierten Relaxationsraten Gamma-C6H6-C1´H1´ (Pyrimidine) und Gamma-C6H6-C1´H1´ (Purine) zu messen. Die kreuzkorrelierten Relaxationsraten wurden an einer 13C,15N-markierten cUUCGg-Tetraloop-14mer-RNA bestimmt. Die aus den Raten extrahierten Chi-Winkel wurden mit bereits vorhandener Strukturinformation verglichen. Sie stimmen bemerkenswert gut mit den Winkeln der Kristallstruktur des Tetraloops überein. Zusätzlich wurde die neue Methode an einer größeren 30mer-RNA, dem „Stemloop D“ (SLD) aus dem Coxsackievirus-B3-Kleeblatt, getestet. Für die SLD-RNA wurde der Effekt von anisotroper Rotationsdiffusion auf die Relaxationsraten untersucht. Es konnte gezeigt werden, dass die Chi-Winkelbestimmung besonders für Nukleotide in der anti-Konformation sehr genau ist und die Methode eine eindeutige Unterscheidung von syn- und anti-Konformation zulässt. Im zweiten Teil von Kapitel 4 wird die Entwicklung des Gamma-HCCCH-Experiments beschrieben. Hierbei handelt es sich um eine neue NMR-Pulssequenz zur Messung der Gamma-C1´H1´-C3´H3´-Rate in 13C-markierten RNAs. Die Funktionsfähigkeit der neuen Methode wurde an einer cUUCGg-Tetraloop-14mer-RNA demonstriert. Zusätzlich dazu wurden die analytischen Gamma-C1´H1´-C3´H3´(P,nü_max)-, Gamma-C1´H1´-C4´H4´(P,nü_max)- und Gamma-C2´H2´-C4´H4´(P,nü_max)-Abhängigkeiten mathematisch hergeleitet. Die an der 14mer-RNA gemessenen Gamma-C1´H1´-C3´H3´-Raten wurden mit Hilfe der Gamma-C1´H1´-C3´H3´(P,nü_max)-Beziehung analysiert. Die Ergebnisse für die Pseudorotationsphase P sind konsistent mit Referenzwinkeln aus der 14mer-NMR-Struktur und den bereits bekannten (Gamma-C1´H1´-C2´H2´)/(Gamma-C3´H3´-C4´H4´)-Ratenverhältnissen. Die neue Methode liefert zusätzliche Informationen, um Konformation (P, nü_max) und Dynamik S2(C1´H1´-C3´H3´) der Ribosereste in RNA-Molekülen genauer beschreiben zu können. In Kapitel 5 dieser Arbeit wird die Entwicklung des 3D-HNHC-Experiments, einer neuen NMR-Pulssequenz, beschrieben. Dieses Experiment ermöglicht es, die H2-, C2- und N1-Resonanzen in Adenin-Nukleobasen 13C, 15N-markierter RNA-Oligonukleotide miteinander zu korrelieren. Die Funktionsfähigkeit der neuen Methode wurde an einer mittelgroßen, entsprechend markierten 36mer-RNA demonstriert. Die neue Methode vereinfacht die Zuordnung der Kerne der Adenin-Nukleobasen, da Zuordnungsmehrdeutigkeiten aufgrund überlappender Resonanzen in der 1H-Dimension aufgelöst werden können. In Kombination mit dem TROSY-relayed-HCCH-COSY-Experiment liefert das neue 3D-HNHC-Experiment das fehlende Glied für die Zuordnung der Imino-H3-Resonanzen der Uracil-Nukleobasen über das AU-Basenpaar hinweg zu den H8-Resonanzen der Adenin-Nukleobasen

    Modulation of the stability of the Salmonella fourU-type RNA thermometer

    Get PDF
    RNA thermometers are translational control elements that regulate the expression of bacterial heat shock and virulence genes. They fold into complex secondary structures that block translation at low temperatures. A temperature increase releases the ribosome binding site and thus permits translation initiation. In fourU-type RNA thermometers, the AGGA sequence of the SD region is paired with four consecutive uridines. We investigated the melting points of the wild-type and mutant sequences. It was decreased by 5°C when a stabilizing GC basepair was exchanged by an AU pair or increased by 11°C when an internal AG mismatch was converted to a GC pair, respectively. Stabilized or destabilized RNA structures are directly correlated with decreased or increased in vivo gene expression, respectively. Mg2+ also affected the melting point of the fourU thermometer. Variations of the Mg2+ concentration in the physiological range between 1 and 2 mM translated into a 2.8°C shift of the melting point. Thus, Mg2+ binding to the hairpin RNA is regulatory relevant. Applying three different NMR techniques, two Mg2+ binding sites were found in the hairpin structure. One of these binding sites could be identified as outer sphere binding site that is located within the fourU motif. Binding of the two Mg2+ ions exhibits a positive cooperativity with a Hill coefficient of 1.47. Free energy values delta G for Mg2+ binding determined by NMR are in agreement with data determined from CD measurements. Physiological Mg2+ concentrations reduce enthalpy and entropy values of uncorrelated base pair opening processes for almost all nucleobases

    Translation on demand by a simple RNA-based thermosensor

    Get PDF
    Structured RNA regions are important gene control elements in prokaryotes and eukaryotes. Here, we show that the mRNA of a cyanobacterial heat shock gene contains a built-in thermosensor critical for photosynthetic activity under stress conditions. The exceptionally short 5´-untranslated region is comprised of a single hairpin with an internal asymmetric loop. It inhibits translation of the Synechocystis hsp17 transcript at normal growth conditions, permits translation initiation under stress conditions and shuts down Hsp17 production in the recovery phase. Point mutations that stabilized or destabilized the RNA structure deregulated reporter gene expression in vivo and ribosome binding in vitro. Introduction of such point mutations into the Synechocystis genome produced severe phenotypic defects. Reversible formation of the open and closed structure was beneficial for viability, integrity of the photosystem and oxygen evolution. Continuous production of Hsp17 was detrimental when the stress declined indicating that shutting-off heat shock protein production is an important, previously unrecognized function of RNA thermometers. We discovered a simple biosensor that strictly adjusts the cellular level of a molecular chaperone to the physiological need

    Protein aggregation of the p63 transcription factor underlies severe skin fragility in AEC syndrome.

    Get PDF
    The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the C-terminal domain of the p63 gene can cause ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility and severe, long-lasting skin erosions. Despite deep knowledge of p63 functions, little is known about mechanisms underlying disease pathology and possible treatments. Here, we show that multiple AEC-associated p63 mutations, but not those causative of other diseases, lead to thermodynamic protein destabilization, misfolding, and aggregation, similar to the known p53 gain-of-function mutants found in cancer. AEC mutant proteins exhibit impaired DNA binding and transcriptional activity, leading to dominant negative effects due to coaggregation with wild-type p63 and p73. Importantly, p63 aggregation occurs also in a conditional knock-in mouse model for the disorder, in which the misfolded p63 mutant protein leads to severe epidermal defects. Variants of p63 that abolish aggregation of the mutant proteins are able to rescue p63's transcriptional function in reporter assays as well as in a human fibroblast-to-keratinocyte conversion assay. Our studies reveal that AEC syndrome is a protein aggregation disorder and opens avenues for therapeutic intervention.This work was supported by Telethon Grants GGP09230 and GGP16235 (to C.M.), ERA-Net Research Program on Rare Diseases (ERARE-2) Skin-Dev (C.M.), Italian Association for Cancer Research Grant IG2011-N.11369 (to C.M.), Fondation Dind-Cottier pour la recherche sur la peau (C.M.), DFG Grant DO 545/8-1 (to V.D.), the Centre for Biomolecular Magnetic Resonance, and the Cluster of Excellence Frankfurt (Macromolecular Complexes). P.G. is supported by a Lichtenberg Professorship of the Volkswagen Foundation. C.R. is a PhD student in molecular oncology at the European School of Molecular Medicine

    Modulation of the stability of the Salmonella fourU-type RNA thermometer

    Get PDF
    RNA thermometers are translational control elements that regulate the expression of bacterial heat shock and virulence genes. They fold into complex secondary structures that block translation at low temperatures. A temperature increase releases the ribosome binding site and thus permits translation initiation. In fourU-type RNA thermometers, the AGGA sequence of the SD region is paired with four consecutive uridines. We investigated the melting points of the wild-type and mutant sequences. It was decreased by 5°C when a stabilizing GC basepair was exchanged by an AU pair or increased by 11°C when an internal AG mismatch was converted to a GC pair, respectively. Stabilized or destabilized RNA structures are directly correlated with decreased or increased in vivo gene expression, respectively. Mg2+ also affected the melting point of the fourU thermometer. Variations of the Mg2+ concentration in the physiological range between 1 and 2 mM translated into a 2.8°C shift of the melting point. Thus, Mg2+ binding to the hairpin RNA is regulatory relevant. Applying three different NMR techniques, two Mg2+ binding sites were found in the hairpin structure. One of these binding sites could be identified as outer sphere binding site that is located within the fourU motif. Binding of the two Mg2+ ions exhibits a positive cooperativity with a Hill coefficient of 1.47. Free energy values ΔG for Mg2+ binding determined by NMR are in agreement with data determined from CD measurements

    Modulation of the stability of the Salmonella fourU-type RNA thermometer

    Get PDF
    RNA thermometers are translational control elements that regulate the expression of bacterial heat shock and virulence genes. They fold into complex secondary structures that block translation at low temperatures. A temperature increase releases the ribosome binding site and thus permits translation initiation. In fourU-type RNA thermometers, the AGGA sequence of the SD region is paired with four consecutive uridines. We investigated the melting points of the wild-type and mutant sequences. It was decreased by 5°C when a stabilizing GC basepair was exchanged by an AU pair or increased by 11°C when an internal AG mismatch was converted to a GC pair, respectively. Stabilized or destabilized RNA structures are directly correlated with decreased or increased in vivo gene expression, respectively. Mg2+ also affected the melting point of the fourU thermometer. Variations of the Mg2+ concentration in the physiological range between 1 and 2 mM translated into a 2.8°C shift of the melting point. Thus, Mg2+ binding to the hairpin RNA is regulatory relevant. Applying three different NMR techniques, two Mg2+ binding sites were found in the hairpin structure. One of these binding sites could be identified as outer sphere binding site that is located within the fourU motif. Binding of the two Mg2+ ions exhibits a positive cooperativity with a Hill coefficient of 1.47. Free energy values ΔG for Mg2+ binding determined by NMR are in agreement with data determined from CD measurements

    Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution

    Get PDF
    In prokaryotes, RNA thermometers regulate a number of heat shock and virulence genes. These temperature sensitive RNA elements are usually located in the 5′-untranslated regions of the regulated genes. They repress translation initiation by base pairing to the Shine–Dalgarno sequence at low temperatures. We investigated the thermodynamic stability of the temperature labile hairpin 2 of the Salmonella fourU RNA thermometer over a broad temperature range and determined free energy, enthalpy and entropy values for the base-pair opening of individual nucleobases by measuring the temperature dependence of the imino proton exchange rates via NMR spectroscopy. Exchange rates were analyzed for the wild-type (wt) RNA and the A8C mutant. The wt RNA was found to be stabilized by the extraordinarily stable G14–C25 base pair. The mismatch base pair in the wt RNA thermometer (A8–G31) is responsible for the smaller cooperativity of the unfolding transition in the wt RNA. Enthalpy and entropy values for the base-pair opening events exhibit linear correlation for both RNAs. The slopes of these correlations coincide with the melting points of the RNAs determined by CD spectroscopy. RNA unfolding occurs at a temperature where all nucleobases have equal thermodynamic stabilities. Our results are in agreement with a consecutive zipper-type unfolding mechanism in which the stacking interaction is responsible for the observed cooperativity. Furthermore, remote effects of the A8C mutation affecting the stability of nucleobase G14 could be identified. According to our analysis we deduce that this effect is most probably transduced via the hydration shell of the RNA

    Translation on demand by a simple RNA-based thermosensor

    Get PDF
    Structured RNA regions are important gene control elements in prokaryotes and eukaryotes. Here, we show that the mRNA of a cyanobacterial heat shock gene contains a built-in thermosensor critical for photosynthetic activity under stress conditions. The exceptionally short 5′-untranslated region is comprised of a single hairpin with an internal asymmetric loop. It inhibits translation of the Synechocystis hsp17 transcript at normal growth conditions, permits translation initiation under stress conditions and shuts down Hsp17 production in the recovery phase. Point mutations that stabilized or destabilized the RNA structure deregulated reporter gene expression in vivo and ribosome binding in vitro. Introduction of such point mutations into the Synechocystis genome produced severe phenotypic defects. Reversible formation of the open and closed structure was beneficial for viability, integrity of the photosystem and oxygen evolution. Continuous production of Hsp17 was detrimental when the stress declined indicating that shutting-off heat shock protein production is an important, previously unrecognized function of RNA thermometers. We discovered a simple biosensor that strictly adjusts the cellular level of a molecular chaperone to the physiological need
    corecore