34 research outputs found

    Polyphilicity—An Extension of the Concept of Amphiphilicity in Polymers

    No full text
    Recent developments in synthetic pathways as simple reversible-deactivation radical polymerization (RDRP) techniques and quantitative post-polymerization reactions, most notoriously ‘click’ reactions, leading to segmented copolymers, have broadened the molecular architectures accessible to polymer chemists as a matter of routine. Segments can be blocks, grafted chains, branchings, telechelic end-groups, covalently attached nanoparticles, nanodomains in networks, even sequences of random copolymers, and so on. In this review, we describe the variety of the segmented synthetic copolymers landscape from the point of view of their chemical affinity, or synonymous philicity, in bulk or with their surroundings, such as solvents, permeant gases, and solid surfaces. We focus on recent contributions, current trends, and perspectives regarding polyphilic copolymers, which have, in addition to hydrophilic and lipophilic segments, other philicities, for example, towards solvents, fluorophilic entities, ions, silicones, metals, nanoparticles, and liquid crystalline moieties

    Ion Transport Properties and Ionicity of 1,3-Dimethyl-1,2,3-Triazolium Salts with Fluorinated Anions

    No full text
    1,2,3-Triazolium salts are an important class of materials with a plethora of sophisticated applications. A series of three novel 1,3-dimethyl-1,2,3-triazolium salts with fluorine, containing anions of various size, is synthesized by methylation of 1,2,3-triazole. Their ion conductivity is measured by impedance spectroscopy, and the corresponding ionicities are determined by diffusion coefficients obtained from 1H and 19F pulsed field gradient nuclear magnetic resonance (PFG NMR) spectroscopy data, revealing that the anion strongly influences their ion conductive properties. Since the molar ion conductivities and ionicities of the 1,3-dimethyl-1,2,3-triazolium salts are enhanced in comparison to other 1,2,3-triazolium salts with longer alkyl substituents, they are promising candidates for applications as electrolytes in electrochemical devices

    Synthesis and Characterization of Self-Assembled Highly Stearate-Grafted Hydroxyethyl Starch Conjugates

    No full text
    Polysaccharide-based nanoformulations with tailored hydrophobic properties have become a frontier in nanomedicine applications. Herein, highly hydrophobicized hydroxyethyl starch (HES) conjugates were synthesized by grafting stearic acid (SA) with HES via a carbodiimide-mediated reaction. A detailed NMR characterization of HES and the conjugates was studied to obtain structural information. The grafting ratio of the stearate-HES (St-HES) conjugates was determined from 1H NMR spectra as 29.4% (St-HES29.4) and 60.3% (St-HES60.3). Thermal analyses and X-ray diffractograms suggested an entire transition from amorphous HES to a semicrystalline (St-HES60.3) character upon increasing the degree of grafting. Both conjugates, St-HES29.4 and St-HES60.3, were able to form self-assembled particles with a diameter of 130.7 nm and 152.5 nm, respectively. SEM images showed that the self-aggregates were mostly spherical in shape. These conjugates can be employed to entrap highly hydrophobic drugs with an increased encapsulation efficiency and loading capacity

    On the γ-Phase of Isotactic Polypropylene

    No full text

    Effects on the Properties after Addition of Lithium Salt in Poly(ethylene oxide)/Poly(methyl acrylate) Blends

    No full text
    The studies of phase behavior, dielectric relaxation, and other properties of poly(ethylene oxide) (PEO)/poly(methyl acrylate) (PMA) blends with the addition of lithium perchlorate (LiClO4) were done for different blend compositions. Samples were prepared by a solution casting technique. The binary PEO/PMA blends exhibit a single and compositional-dependent glass transition temperature (Tg), which is also true for ternary mixtures of PEO/PMA/LiClO4 when PEO was in excess with low content of salt. These may indicate miscibility of the constituents for the molten systems and amorphous domains of the systems at room temperature from the macroscopic point of view. Subsequently, the morphology of PEO/PMA blends with or without salt are correlated to the phase behavior of the systems. Phase morphology and molecular interaction of polymer chains by salt ions of the systems may rule the dielectric or electric relaxation at room temperature, which was estimated using electrochemical impedance spectroscopy (EIS). The frequency-dependent impedance spectra are of interest for the elucidation of polarization and relaxation of the charged entities for the systems. Relaxation can be noted only when a sufficient amount of salt is added into the systems
    corecore