2,907 research outputs found
Dynamical breakdown of the Ising spin-glass order under a magnetic field
The dynamical magnetic properties of an Ising spin glass
FeMnTiO are studied under various magnetic fields. Having
determined the temperature and static field dependent relaxation time
from ac magnetization measurements under a dc bias field by a
general method, we first demonstrate that these data provide evidence for a
spin-glass (SG) phase transition only in zero field. We next argue that the
data of finite can be well interpreted by the droplet theory
which predicts the absence of a SG phase transition in finite fields.Comment: 4 pages, 5 figure
Abundances of disk and bulge giants from hi-res optical spectra: II. O, Mg, Ca, and Ti in the bulge sample
Determining elemental abundances of bulge stars can, via chemical evolution
modeling, help to understand the formation and evolution of the bulge. Recently
there have been claims both for and against the bulge having a different
[/Fe] vs. [Fe/H]-trend as compared to the local thick disk possibly
meaning a faster, or at least different, formation time scale of the bulge as
compared to the local thick disk. We aim to determine the abundances of oxygen,
magnesium, calcium, and titanium in a sample of 46 bulge K-giants, 35 of which
have been analyzed for oxygen and magnesium in previous works, and compare them
to homogeneously determined elemental abundances of a local disk sample of 291
K-giants. We use spectral synthesis to determine both the stellar parameters as
well as the elemental abundances of the bulge stars analyzed here. The method
is exactly the same as was used for analyzing the comparison sample of 291
local K-giants in Paper I of this series. Compared to the previous analysis of
the 35 stars in our sample, we find lower [Mg/Fe] for [Fe/H]>-0.5, and
therefore contradict the conclusion about a declining [O/Mg] for increasing
[Fe/H]. We instead see a constant [O/Mg] over all the observed [Fe/H] in the
bulge. Furthermore, we find no evidence for a different behavior of the
alpha-iron trends in the bulge as compared to the local thick disk from our two
samples.Comment: Accepted for publication in A&
Comment on "Memory Effects in an Interacting Magnetic Nanoparticle System"
In Phys. Rev. Lett. 91 167206 (2003), Sun et al. study memory effects in an
interacting nanoparticle system with specific temperature and field protocols.
The authors claim that the observed memory effects originate from spin-glass
dynamics and that the results are consistent with the hierarchical picture of
the spin-glass phase. In this comment, we argue their claims premature by
demonstrating that all their experimental curves can be reproduced
qualitatively using only a simplified model of isolated nanoparticles with a
temperature dependent distribution of relaxation times.Comment: 1 page, 2 figures, slightly changed content, the parameters involved
in Figs. 1 and 2 are changed a little for a semi-quantitative comparision
with experimental result
Light Interception and Dry Matter Yield in Grass/Legume Mixtures
The influence of grass variety on light interception and dry matter yield in a grass/clover mixture was studied. Two varieties of timothy (Phleum pratense L.) and five varieties of ryegrass (Lolium spp) as components in a mixture were compared during the spring period up to the first cut of the third harvest year. By replacing the timothy variety in the mixture both light interception and dry matter yield were significantly affected. The leaf orientation was thought to be a contributing factor with erect leaves intercepting less light. There were no significant differences neither in light interception nor in yield between the mixtures with different ryegrass varieties, not even between the earliest and the latest varieties being the two contrasts in light interception
Fluorine in the solar neighborhood - is it all produced in AGB-stars?
The origin of 'cosmic' fluorine is uncertain, but there are three proposed
production sites/mechanisms: AGB stars, nucleosynthesis in Type II
supernovae, and/or the winds of Wolf-Rayet stars. The relative importance of
these production sites has not been established even for the solar
neighborhood, leading to uncertainties in stellar evolution models of these
stars as well as uncertainties in the chemical evolution models of stellar
populations.
We determine the fluorine and oxygen abundances in seven bright, nearby
giants with well-determined stellar parameters. We use the 2.3 m
vibrational-rotational HF line and explore a pure rotational HF line at 12.2
m. The latter has never been used before for an abundance analysis. To be
able to do this we have calculated a line list for pure rotational HF lines. We
find that the abundances derived from the two diagnostics agree.
Our derived abundances are well reproduced by chemical evolution models only
including fluorine production in AGB-stars and therefore we draw the conclusion
that this might be the main production site of fluorine in the solar
neighborhood. Furthermore, we highlight the advantages of using the 12 m
HF lines to determine the possible contribution of the -process to the
fluorine budget at low metallicities where the difference between models
including and excluding this process is dramatic
Electron Correlation Driven Heavy-Fermion Formation in LiV2O4
Optical reflectivity measurements were performed on a single crystal of the
d-electron heavy-fermion (HF) metal LiV2O4. The results evidence the highly
incoherent character of the charge dynamics for all temperatures above T^*
\approx 20 K. The spectral weight of the optical conductivity is redistributed
over extremely broad energy scales (~ 5 eV) as the quantum coherence of the
charge carriers is recovered. This wide redistribution is, in sharp contrast to
f-electron Kondo lattice HF systems, characteristic of a metallic system close
to a correlation driven insulating state. Our results thus reveal that strong
electronic correlation effects dominate the low-energy charge dynamics and
heavy quasiparticle formation in LiV2O4. We propose the geometrical
frustration, which limits the extension of charge and spin ordering, as an
additional key ingredient of the low-temperature heavy-fermion formation in
this system.Comment: 5 pages, 3 figure
- …