2,602 research outputs found
Immersive Composition for Sensory Rehabilitation: 3D Visualisation, Surround Sound, and Synthesised Music to Provoke Catharsis and Healing
There is a wide range of sensory therapies using sound, music and visual stimuli. Some focus on soothing or distracting stimuli such as natural sounds or classical music as analgesic, while other approaches emphasize the
active performance of producing music as therapy. This paper proposes an immersive
multi-sensory Exposure Therapy for people suffering from anxiety disorders, based on a rich, detailed surround-soundscape. This soundscape is composed to include the users’ own idiosyncratic anxiety triggers as a form of
habituation, and to provoke psychological catharsis, as a non-verbal, visceral and enveloping exposure. To accurately pinpoint the most effective sounds and to optimally compose the soundscape we will monitor the participants’ physiological responses such as electroencephalography, respiration, electromyography, and heart rate during exposure. We hypothesize that such physiologically optimized sensory landscapes will aid the development of future immersive therapies for various psychological conditions, Sound is a major trigger of anxiety, and auditory hypersensitivity is an extremely problematic symptom. Exposure to stress-inducing sounds can free anxiety sufferers from entrenched avoidance behaviors, teaching physiological coping strategies and encouraging resolution of the psychological issues agitated by the sound
Constraining dark matter halo properties using lensed SNLS supernovae
This paper exploits the gravitational magnification of SNe Ia to measure
properties of dark matter haloes. The magnification of individual SNe Ia can be
computed using observed properties of foreground galaxies and dark matter halo
models. We model the dark matter haloes of the galaxies as truncated singular
isothermal spheres with velocity dispersion and truncation radius obeying
luminosity dependent scaling laws. A homogeneously selected sample of 175 SNe
Ia from the first 3-years of the Supernova Legacy Survey (SNLS) in the redshift
range 0.2 < z < 1 is used to constrain models of the dark matter haloes
associated with foreground galaxies. The best-fitting velocity dispersion
scaling law agrees well with galaxy-galaxy lensing measurements. We further
find that the normalisation of the velocity dispersion of passive and star
forming galaxies are consistent with empirical Faber-Jackson and Tully-Fisher
relations, respectively. If we make no assumption on the normalisation of these
relations, we find that the data prefer gravitational lensing at the 92 per
cent confidence level. Using recent models of dust extinction we deduce that
the impact of this effect on our results is very small. We also investigate the
brightness scatter of SNe Ia due to gravitational lensing. The gravitational
lensing scatter is approximately proportional to the SN Ia redshift. We find
the constant of proportionality to be B = 0.055 +0.039 -0.041 mag (B < 0.12 mag
at the 95 per cent confidence level). If this model is correct, the
contribution from lensing to the intrinsic brightness scatter of SNe Ia is
small for the SNLS sample.Comment: 11 pages, 7 figures, accepted for publication in MNRA
Finite-size effects in amorphous Fe90Zr10/Al75Zr25 multilayers
The thickness dependence of the magnetic properties of amorphous Fe90Zr10
layers has been explored using Fe90Zr10/Al75Zr25 multilayers. The Al75Zr25
layer thickness is kept at 40 \AA, while the thickness of the Fe90Zr10 layers
is varied between 5 and 20 \AA. The thickness of the Al75Zr25 layers is
sufficiently large to suppress any significant interlayer coupling. Both the
Curie temperature and the spontaneous magnetization decrease non-linearly with
decreasing thickness of the Fe90Zr10 layers. No ferromagnetic order is observed
in the multilayer with 5 {\AA} Fe90Zr10 layers. The variation of the Curie
temperature with the Fe90Zr10 layer thickness is fitted with a
finite-size scaling formula [1-\Tc(t)/\Tc(\infty)]=[(t-t')/t_0]^{-\lambda},
yielding , and a critical thickness \AA, below which the
Curie temperature is zero.Comment: 8 pages, 8 figure
A Variational Approach for Minimizing Lennard-Jones Energies
A variational method for computing conformational properties of molecules
with Lennard-Jones potentials for the monomer-monomer interactions is
presented. The approach is tailored to deal with angular degrees of freedom,
{\it rotors}, and consists in the iterative solution of a set of deterministic
equations with annealing in temperature. The singular short-distance behaviour
of the Lennard-Jones potential is adiabatically switched on in order to obtain
stable convergence. As testbeds for the approach two distinct ensembles of
molecules are used, characterized by a roughly dense-packed ore a more
elongated ground state. For the latter, problems are generated from natural
frequencies of occurrence of amino acids and phenomenologically determined
potential parameters; they seem to represent less disorder than was previously
assumed in synthetic protein studies. For the dense-packed problems in
particular, the variational algorithm clearly outperforms a gradient descent
method in terms of minimal energies. Although it cannot compete with a careful
simulating annealing algorithm, the variational approach requires only a tiny
fraction of the computer time. Issues and results when applying the method to
polyelectrolytes at a finite temperature are also briefly discussed.Comment: 14 pages, uuencoded compressed postscript fil
Toward Quantum Superposition of Living Organisms
The most striking feature of quantum mechanics is the existence of
superposition states, where an object appears to be in different situations at
the same time. The existence of such states has been tested with small objects,
like atoms, ions, electrons and photons, and even with molecules. More
recently, it has been possible to create superpositions of collections of
photons, atoms, or Cooper pairs. Current progress in optomechanical systems may
soon allow us to create superpositions of even larger objects, like micro-sized
mirrors or cantilevers, and thus to test quantum mechanical phenomena at larger
scales. Here we propose a method to cool down and create quantum superpositions
of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped
inside a high--finesse cavity at a very low pressure. Our method is ideally
suited for the smallest living organisms, such as viruses, which survive under
low vacuum pressures, and optically behave as dielectric objects. This opens up
the possibility of testing the quantum nature of living organisms by creating
quantum superposition states in very much the same spirit as the original
Schr\"odinger's cat "gedanken" paradigm. We anticipate our essay to be a
starting point to experimentally address fundamental questions, such as the
role of life and consciousness in quantum mechanics.Comment: 9 pages, 4 figures, published versio
Existence of a phase transition under finite magnetic field in the long-range RKKY Ising spin glass DyYRuSi
A phase transition of a model compound of the long-range Ising spin glass
(SG) DyYRuSi, where spins interact via the RKKY
interaction, has been investigated. The static and the dynamic scaling analyses
reveal that the SG phase transition in the model magnet belongs to the
mean-field universality class. Moreover, the characteristic relaxation time in
finite magnetic fields exhibits a critical divergent behavior as well as in
zero field, indicating a stability of the SG phase in finite fields. The
presence of the SG phase transition in field in the model magnet strongly
syggests that the replica symmetry is broken in the long-range Ising SG.Comment: 4 pages, 4 figures, to be published in JPSJ (2010
Spin Glasses: Model systems for non-equilibrium dynamics
Spin glasses are frustrated magnetic systems due to a random distribution of
ferro- and antiferromagnetic interactions. An experimental three dimensional
(3d) spin glass exhibits a second order phase transition to a low temperature
spin glass phase regardless of the spin dimensionality. In addition, the low
temperature phase of Ising and Heisenberg spin glasses exhibits similar
non-equilibrium dynamics and an infinitely slow approach towards a
thermodynamic equilibrium state. There are however significant differences in
the detailed character of the dynamics as to memory and rejuvenation phenomena
and the influence of critical dynamics on the behaviour. In this article, some
aspects of the non-equilibrium dynamics of an Ising and a Heisenberg spin glass
are briefly reviewed and some comparisons are made to other glassy systems that
exhibit magnetic non-equilibrium dynamics.Comment: To appear in J. Phys.: Condens. Matter, Proceedings from HFM2003,
Grenobl
Pinholes May Mimic Tunneling
Interest in magnetic-tunnel junctions has prompted a re-examination of
tunneling measurements through thin insulating films. In any study of
metal-insulator-metal trilayers, one tries to eliminate the possibility of
pinholes (small areas over which the thickness of the insulator goes to zero so
that the upper and lower metals of the trilayer make direct contact). Recently,
we have presented experimental evidence that ferromagnet-insulator-normal
trilayers that appear from current-voltage plots to be pinhole-free may
nonetheless in some cases harbor pinholes. Here, we show how pinholes may arise
in a simple but realistic model of film deposition and that purely classical
conduction through pinholes may mimic one aspect of tunneling, the exponential
decay in current with insulating thickness.Comment: 9 pages, 3 figures, plain TeX; submitted to Journal of Applied
Physic
A Model Analysis of Mechanisms for Radial Microtubular Patterns at Root Hair Initiation Sites
Plant cells have two main modes of growth generating anisotropic structures. Diffuse growth where whole cell walls extend in specific directions, guided by anisotropically positioned cellulose fibers, and tip growth, with inhomogeneous addition of new cell wall material at the tip of the structure. Cells are known to regulate these processes via molecular signals and the cytoskeleton. Mechanical stress has been proposed to provide an input to the positioning of the cellulose fibers via cortical microtubules in diffuse growth. In particular, a stress feedback model predicts a circumferential pattern of fibers surrounding apical tissues and growing primordia, guided by the anisotropic curvature in such tissues. In contrast, during the initiation of tip growing root hairs, a star-like radial pattern has recently been observed. Here, we use detailed finite element models to analyze how a change in mechanical properties at the root hair initiation site can lead to star-like stress patterns in order to understand whether a stress-based feedback model can also explain the microtubule patterns seen during root hair initiation. We show that two independent mechanisms, individually or combined, can be sufficient to generate radial patterns. In the first, new material is added locally at the position of the root hair. In the second, increased tension in the initiation area provides a mechanism. Finally, we describe how a molecular model of Rho-of-plant (ROP) GTPases activation driven by auxin can position a patch of activated ROP protein basally along a 2D root epidermal cell plasma membrane, paving the way for models where mechanical and molecular mechanisms cooperate in the initial placement and outgrowth of root hairs.This work was funded by the Knut and Alice Wallenberg Foundation via grant ShapeSystems (KAW 2012.0050) to MG and HJ, the Swedish Research Council (VR2013-4632) to HJ, and the Gatsby Charitable Foundation (GAT3395/PR4) to HJ
Incorporation of excluded volume correlations into Poisson-Boltzmann theory
We investigate the effect of excluded volume interactions on the electrolyte
distribution around a charged macroion. First, we introduce a criterion for
determining when hard-core effects should be taken into account beyond standard
mean field Poisson-Boltzmann (PB) theory. Next, we demonstrate that several
commonly proposed local density functional approaches for excluded volume
interactions cannot be used for this purpose. Instead, we employ a non-local
excess free energy by using a simple constant weight approach. We compare the
ion distribution and osmotic pressure predicted by this theory with Monte Carlo
simulations. They agree very well for weakly developed correlations and give
the correct layering effect for stronger ones. In all investigated cases our
simple weighted density theory yields more realistic results than the standard
PB approach, whereas all local density theories do not improve on the PB
density profiles but on the contrary, deviate even more from the simulation
results.Comment: 23 pages, 7 figures, 1 tabl
- …