2,446 research outputs found

    A Variational Approach for Minimizing Lennard-Jones Energies

    Full text link
    A variational method for computing conformational properties of molecules with Lennard-Jones potentials for the monomer-monomer interactions is presented. The approach is tailored to deal with angular degrees of freedom, {\it rotors}, and consists in the iterative solution of a set of deterministic equations with annealing in temperature. The singular short-distance behaviour of the Lennard-Jones potential is adiabatically switched on in order to obtain stable convergence. As testbeds for the approach two distinct ensembles of molecules are used, characterized by a roughly dense-packed ore a more elongated ground state. For the latter, problems are generated from natural frequencies of occurrence of amino acids and phenomenologically determined potential parameters; they seem to represent less disorder than was previously assumed in synthetic protein studies. For the dense-packed problems in particular, the variational algorithm clearly outperforms a gradient descent method in terms of minimal energies. Although it cannot compete with a careful simulating annealing algorithm, the variational approach requires only a tiny fraction of the computer time. Issues and results when applying the method to polyelectrolytes at a finite temperature are also briefly discussed.Comment: 14 pages, uuencoded compressed postscript fil

    Absence of Conventional Spin-Glass Transition in the Ising Dipolar System LiHo_xY_{1-x}F_4

    Full text link
    The magnetic properties of single crystals of LiHo_xY_{1-x}F_4 with x=16.5% and x=4.5% were recorded down to 35 mK using a micro-SQUID magnetometer. While this system is considered as the archetypal quantum spin glass, the detailed analysis of our magnetization data indicates the absence of a phase transition, not only in a transverse applied magnetic field, but also without field. A zero-Kelvin phase transition is also unlikely, as the magnetization seems to follow a non-critical exponential dependence on the temperature. Our analysis thus unmasks the true, short-ranged nature of the magnetic properties of the LiHo_xY_{1-x}F_4 system, validating recent theoretical investigations suggesting the lack of phase transition in this system.Comment: 5 pages, 4 figure

    Finite-size effects in amorphous Fe90Zr10/Al75Zr25 multilayers

    Full text link
    The thickness dependence of the magnetic properties of amorphous Fe90Zr10 layers has been explored using Fe90Zr10/Al75Zr25 multilayers. The Al75Zr25 layer thickness is kept at 40 \AA, while the thickness of the Fe90Zr10 layers is varied between 5 and 20 \AA. The thickness of the Al75Zr25 layers is sufficiently large to suppress any significant interlayer coupling. Both the Curie temperature and the spontaneous magnetization decrease non-linearly with decreasing thickness of the Fe90Zr10 layers. No ferromagnetic order is observed in the multilayer with 5 {\AA} Fe90Zr10 layers. The variation of the Curie temperature TcT_c with the Fe90Zr10 layer thickness tt is fitted with a finite-size scaling formula [1-\Tc(t)/\Tc(\infty)]=[(t-t')/t_0]^{-\lambda}, yielding λ=1.2\lambda=1.2, and a critical thickness t=6.5t'=6.5 \AA, below which the Curie temperature is zero.Comment: 8 pages, 8 figure

    Constraining dark matter halo properties using lensed SNLS supernovae

    Full text link
    This paper exploits the gravitational magnification of SNe Ia to measure properties of dark matter haloes. The magnification of individual SNe Ia can be computed using observed properties of foreground galaxies and dark matter halo models. We model the dark matter haloes of the galaxies as truncated singular isothermal spheres with velocity dispersion and truncation radius obeying luminosity dependent scaling laws. A homogeneously selected sample of 175 SNe Ia from the first 3-years of the Supernova Legacy Survey (SNLS) in the redshift range 0.2 < z < 1 is used to constrain models of the dark matter haloes associated with foreground galaxies. The best-fitting velocity dispersion scaling law agrees well with galaxy-galaxy lensing measurements. We further find that the normalisation of the velocity dispersion of passive and star forming galaxies are consistent with empirical Faber-Jackson and Tully-Fisher relations, respectively. If we make no assumption on the normalisation of these relations, we find that the data prefer gravitational lensing at the 92 per cent confidence level. Using recent models of dust extinction we deduce that the impact of this effect on our results is very small. We also investigate the brightness scatter of SNe Ia due to gravitational lensing. The gravitational lensing scatter is approximately proportional to the SN Ia redshift. We find the constant of proportionality to be B = 0.055 +0.039 -0.041 mag (B < 0.12 mag at the 95 per cent confidence level). If this model is correct, the contribution from lensing to the intrinsic brightness scatter of SNe Ia is small for the SNLS sample.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Tentative detection of the gravitational magnification of type Ia supernovae

    Get PDF
    The flux from distant type Ia supernovae (SN) is likely to be amplified or de-amplified by gravitational lensing due to matter distributions along the line-of-sight. A gravitationally lensed SN would appear brighter or fainter than the average SN at a particular redshift. We estimate the magnification of 26 SNe in the GOODS fields and search for a correlation with the residual magnitudes of the SNe. The residual magnitude, i.e. the difference between observed and average magnitude predicted by the "concordance model" of the Universe, indicates the deviation in flux from the average SN. The linear correlation coefficient for this sample is r=0.29. For a similar, but uncorrelated sample, the probability of obtaining a correlation coefficient equal to or higher than this value is ~10%, i.e. a tentative detection of lensing at ~90% confidence level. Although the evidence for a correlation is weak, our result is in accordance with what could be expected given the small size of the sample.Comment: 7 pages, 2 figure

    Assessing cost-effectiveness of early intervention in Alzheimer's disease: An open-source modeling framework

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordIntroduction: We develop a framework to model disease progression across Alzheimer's disease (AD) and to assess the cost-effectiveness of future disease-modifying therapies (DMTs) for people with mild cognitive impairment (MCI) due to AD. Methods: Using data from the US National Alzheimer's Coordinating Center, we apply survival analysis to estimate transition from predementia to AD dementia and ordered probit regression to estimate transitions across AD dementia stages. We investigate the cost-effectiveness of a hypothetical treatment scenario for people in MCI due to AD. Results: We present an open-access model-based decision-analytic framework. Assuming a modest DMT treatment effect in MCI, we predict extended life expectancy and a reduction in time with AD dementia. Discussion: Any future DMT for AD is expected to pose significant economic challenges across all health-care systems, and decision-analytic modeling will be required to assess costs and outcomes. Further developments are needed to inform these health policy considerations

    Pinholes May Mimic Tunneling

    Full text link
    Interest in magnetic-tunnel junctions has prompted a re-examination of tunneling measurements through thin insulating films. In any study of metal-insulator-metal trilayers, one tries to eliminate the possibility of pinholes (small areas over which the thickness of the insulator goes to zero so that the upper and lower metals of the trilayer make direct contact). Recently, we have presented experimental evidence that ferromagnet-insulator-normal trilayers that appear from current-voltage plots to be pinhole-free may nonetheless in some cases harbor pinholes. Here, we show how pinholes may arise in a simple but realistic model of film deposition and that purely classical conduction through pinholes may mimic one aspect of tunneling, the exponential decay in current with insulating thickness.Comment: 9 pages, 3 figures, plain TeX; submitted to Journal of Applied Physic

    Extended atomic data for oxygen abundance analyses

    Full text link
    As the most abundant element in the universe after hydrogen and helium, oxygen plays a key role in planetary, stellar, and galactic astrophysics. Its abundance is especially influential on stellar structure and evolution, and as the dominant opacity contributor at the base of the Sun's convection zone it is central to the discussion around the solar modelling problem. However, abundance analyses require complete and reliable sets of atomic data. We present extensive atomic data for O I, by using the multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction methods. Lifetimes and transition probabilities for radiative electric dipole transitions are given and compared with results from previous calculations and available measurements. The accuracy of the computed transition rates is evaluated by the differences between the transition rates in Babushkin and Coulomb gauges, as well as by a cancellation factor analysis. Out of the 989 computed transitions in this work, 205 are assigned to the accuracy classes AA-B, that is, with uncertainties less than 10%, following the criteria defined by the National Institute of Standards and Technology Atomic Spectra Database. We discuss the influence of the new log(gf) values on the solar oxygen abundance and ultimately advocate logϵO=8.70±0.04\log\epsilon_{\mathrm{O}}=8.70\pm0.04.Comment: 13 pages, 5 figures; Accepted for publication in Astronomy & Astrophysic

    Toward Quantum Superposition of Living Organisms

    Full text link
    The most striking feature of quantum mechanics is the existence of superposition states, where an object appears to be in different situations at the same time. The existence of such states has been tested with small objects, like atoms, ions, electrons and photons, and even with molecules. More recently, it has been possible to create superpositions of collections of photons, atoms, or Cooper pairs. Current progress in optomechanical systems may soon allow us to create superpositions of even larger objects, like micro-sized mirrors or cantilevers, and thus to test quantum mechanical phenomena at larger scales. Here we propose a method to cool down and create quantum superpositions of the motion of sub-wavelength, arbitrarily shaped dielectric objects trapped inside a high--finesse cavity at a very low pressure. Our method is ideally suited for the smallest living organisms, such as viruses, which survive under low vacuum pressures, and optically behave as dielectric objects. This opens up the possibility of testing the quantum nature of living organisms by creating quantum superposition states in very much the same spirit as the original Schr\"odinger's cat "gedanken" paradigm. We anticipate our essay to be a starting point to experimentally address fundamental questions, such as the role of life and consciousness in quantum mechanics.Comment: 9 pages, 4 figures, published versio

    Aging and scaling laws in β\beta-hydroquinone-clathrate

    Full text link
    The dielectric permittivity of the orientational glass methanol(x=0.73)-β\beta-hydroquinone-clathrate has been studied as function of temperature and waiting time using different temperature-time-protocols. We study aging, rejuvenation and memory effects in the glassy phase and discuss similarities and differences to aging in spin-glasses. We argue that the diluted methanol-clathrate, although conceptually close to its magnetic pendants, takes an intermediate character between a true spin-glass and a pure random field system
    corecore