8 research outputs found

    Observational methods for COVID-19 vaccine effectiveness research:an empirical evaluation and target trial emulation

    Get PDF
    Background:There are scarce data on best practices to control for confounding in observational studies assessing vaccine effectiveness to prevent COVID-19. We compared the performance of three well-established methods [overlap weighting, inverse probability treatment weighting and propensity score (PS) matching] to minimize confounding when comparing vaccinated and unvaccinated people. Subsequently, we conducted a target trial emulation to study the ability of these methods to replicate COVID-19 vaccine trials.Methods:We included all individuals aged ≥75 from primary care records from the UK [Clinical Practice Research Datalink (CPRD) AURUM], who were not infected with or vaccinated against SARS-CoV-2 as of 4 January 2021. Vaccination status was then defined based on first COVID-19 vaccine dose exposure between 4 January 2021 and 28 January 2021. Lasso regression was used to calculate PS. Location, age, prior observation time, regional vaccination rates, testing effort and COVID-19 incidence rates at index date were forced into the PS. Following PS weighting and matching, the three methods were compared for remaining covariate imbalance and residual confounding. Last, a target trial emulation comparing COVID-19 at 3 and 12 weeks after first vaccine dose vs unvaccinated was conducted.Results:Vaccinated and unvaccinated cohorts comprised 583 813 and 332 315 individuals for weighting, respectively, and 459 000 individuals in the matched cohorts. Overlap weighting performed best in terms of minimizing confounding and systematic error. Overlap weighting successfully replicated estimates from clinical trials for vaccine effectiveness for ChAdOx1 (57%) and BNT162b2 (75%) at 12 weeks.Conclusion:Overlap weighting performed best in our setting. Our results based on overlap weighting replicate previous pivotal trials for the two first COVID-19 vaccines approved in Europe

    Calculating daily dose in the Observational Medical Outcomes Partnership Common Data Model

    Get PDF
    Purpose: We aimed to develop a standardized method to calculate daily dose (i.e., the amount of drug a patient was exposed to per day) of any drug on a global scale using only drug information of typical observational data in the Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) and a single reference table from Observational Health Data Sciences And Informatics (OHDSI). Materials and Methods: The OMOP DRUG_STRENGTH reference table contains information on the strength or concentration of drugs, whereas the OMOP DRUG_EXPOSURE table contains information on patients' drug prescriptions or dispensations/claims. Based on DRUG_EXPOSURE data from the primary care databases Clinical Practice Research Datalink GOLD (United Kingdom) and Integrated Primary Care Information (IPCI, The Netherlands) and healthcare claims from PharMetrics® Plus for Academics (USA), we developed four formulas to calculate daily dose given different DRUG_STRENGTH reference table information. We tested the dose formulas by comparing the calculated median daily dose to the World Health Organization (WHO) Defined Daily Dose (DDD) for six different ingredients in those three databases and additional four international databases representing a variety of healthcare settings: MAITT (Estonia, healthcare claims and discharge summaries), IQVIA Disease Analyzer Germany (outpatient data), IQVIA Longitudinal Patient Database Belgium (outpatient data), and IMASIS Parc Salut (Spain, hospital data). Finally, in each database, we assessed the proportion of drug records for which daily dose calculations were possible using the suggested formulas. Results: Applying the dose formulas, we obtained median daily doses that generally matched the WHO DDD definitions. Our dose formulas were applicable to >85% of drug records in all but one of the assessed databases. Conclusion: We have established and implemented a standardized daily dose calculation in OMOP CDM providing reliable and reproducible results

    Interferences with Dopamine

    No full text
    corecore