3 research outputs found
Effect of Thermo-Physical Properties of the Tool Materials on the Electro-Discharge Machining Performance of Ti-6Al-4V and SS316 Work Piece Materials
Electro-discharge machining (EDM) is a useful non-conventional machining operation frequently applied to make different complex geometries in any conducting material. The objectives of the present paper are to study the effect of a variation of thermo-physical properties (TPP) of three different tool materials on EDM performances. The different performances compared in this paper are: material removal rate (MRR), tool-wear rate (TWR), surface roughness (SR), radial overcut (ROC), surface-crack density (SCD) and surface hardness. Two of the most widely used work piece materials, such as corrosion-resistant austenitic stainless steel (SS316) and high strength corrosion-resistance titanium alloy (Ti-6Al-4V), are machined with the help of three different tools by varying input current and maintaining constant pulse-on time, pulse-off time and flushing pressure. Microstructural studies of the tool tip surface after machining have also been carried out. It is found that among these three tool materials, the copper tool showed the best machining performance with respect to material removal rate, radial overcut, surface finish and surface-crack density. This work will help industry personnel to choose a suitable tool for a specific work piece material
A Novel Methodology for Simultaneous Minimization of Manufacturing Objectives in Tolerance Allocation of Complex Assembly
Tolerance cost and machining time play crucial roles while performing tolerance allocation in complex assemblies. The aim of the proposed work is to minimize the above-said manufacturing objectives for allocating optimum tolerance to the components of complex assemblies, by considering the proper process and machine selections from the given alternatives. A novel methodology that provides a two-step solution is developed for this work. First, a heuristic approach is applied to determine the best machine for each process, and then a combined whale optimization algorithm with a univariate search method is used to allocate optimum tolerances with the best process selection for each sub-stage/operation. The efficiency of the proposed novel methodology is validated by solving two typical tolerance allocation problems of complex assemblies: a wheel mounting assembly and a knuckle joint assembly. Compared with previous approaches, the proposed methodology showed a considerable reduction in tolerance cost and machining time in relatively less computation time
Harmony Search Algorithm for Minimizing Assembly Variation in Non-linear Assembly
The proposed work aims to acquire the maximum number of non-linear assemblies with closer assembly tolerance specifications by mating the different bins’ components. Before that, the components are classified based on the range of tolerance values and grouped into different bins. Further, the manufacturing process of the components is selected from the given and known alternative processes. It is incredibly tedious to obtain the best combinations of bins and the best process together. Hence, a novel approach using the combination of the univariate search method and the harmony search algorithm is proposed in this work. Overrunning clutch assembly is taken as an example. The components of overrunning clutch assembly are manufactured with a wide tolerance value using the best process selected from the given alternatives by the univariate search method. Further, the manufactured components are grouped into three to nine bins. A combination of the best bins is obtained for the various assembly specifications by implementing the harmony search algorithm. The efficacy of the proposed method is demonstrated by showing 24.9% of cost-savings while making overrunning clutch assembly compared with the existing method. The efficacy of the proposed method is demonstrated by showing 24.9% of cost-savings while making overrunning clutch assembly compared with the existing method. The results show that the contribution of the proposed novel methodology is legitimate in solving selective assembly problems